Утверждённая научная специальность ВАК: 1.4.7. Высокомолекулярные соединения; 1.4.9. Биоорганическая химия; 1.4.14. Кинетика и катализ; 1.5.4. Биохимия; 1.5.6. Биотехнология. Идентификатор ссылки на объект — ROI: jbc-01/25-81-2-94 Цифровой идентификатор объекта — DOI: 10.37952/ROI-jbc-01/25-81-2-94 УДК 619:611.018.54. Поступила в редакцию 19 февраля 2025 г.

Активация клеточного метаболизма *in vitro* с использованием высокомолекулярных биополимеров

© Чурина¹ Зоя Геннадьевна, Плотникова^{2*+} Эдие Миначетдиновна, Вафин² Фаниль Рафаэлевич, Нургалиев¹ Фарит Муллагалиевич, Нестерова² Ирина Александровна, Матвеева³ Елена Лаврентьевна

¹ Казанская государственная академия ветеринарной медицины имени Н.Э. Баумана. ул. Сибирский тракт, 35. г. Казань, 420029. Республика Татарстан. Россия.
² Федеральный центр токсикологической, радиационной и биологической безопасности. Научный городок-2. г. Казань, 420075. Республика Татарстан. Россия. Тел.: +7 (843) 239-53-20. E-mail: vnivi@mail.ru

³ Казанский инновационный университет имени В.Г. Тимирясова. ул. Московская-42.

г. Казань, 420111. Республика Татарстан. Россия. E-mail: adiya2397031@mail.ru

Ключевые слова: обзор, апифитопрепарат, биополимер, культура клеток, биотехнология, клеточный метаболизм, репродукция вирусов.

Аннотация

В обзорной статье проанализировано перспективное направление в области биотехнологии – применение высокомолекулярных соединений – биополимеров. Целью работы было изучение и анализ отечественной и зарубежной научной литературы, посвященной выбранной теме. Наиболее высокая биологическая активность выявлена у природных биологических полимеров хитина и хитозана, полученных от ракообразных и насекомых. Их влияние основано на стимуляции РНК, что далее способствует усилению роста и развития клеток. Принимая во внимание высокую биологическую активность природных полимеров, интерес специалистов к хитинсодержащим препаратам, полученным на основе продуктов пчеловодства, продолжает расти. Особенно примечательно, что установлена возможность стимуляции миоцитов и спленоцитов при использовании в качестве добавки в питательные среды апипрепаратов (препараты на основе восковой моли, маточного молочка и перги). Выявлено, что биологическое действие апипродуктов существенно увеличивается при комбинированном применении их с сырьем растительного («Эраконд», пшеничные отруби, мумие) и животного (кумыс) проихождения. Наиболее высокую активность имеют природные биополимеры (хитин, хитозан), получаемые из ракообразных и насекомых (пчел). Данное обстоятельство неоднократно подтверждено испытаниями, где установлено, что при внесении в питательные среды биополимеров (восковой моли) существенно повышалась пролиферация культивируемых животных клеток (лимфоцитов, спленоцитов) в условиях in vitro. Основываясь на том, что взаимодействие фитопрепапаратов и апипродуктов усиливает биологическое действие отдельных компонентов, сотрудниками ФГБНУ «Федеральный центр токсикологической, радиационной и биологической безопасности» была разработана хитинсодержащая натуральная биологическая активная композиция «Вита-Форце», являющаяся уникальной по своему составу (более 400 химических соединений) и биологическому влиянию (метаболизм-, рост- и иммуностимулирующее, детоксицирующее, адаптогенное и антиоксидантное) в условия опыта in vitro. Было выдвинуто предположение, что вышеописанная композиция может быть применена, как активатор метаболизма при культивировании животных клеток в условиях *in vitro* в целях репродукции вирусов для производства вакцинных препаратов.

Выходные данные для цитирования русскоязычной печатной версии статьи:

Чурина З.Г., Плотникова Э.М., Вафин Ф.Р., Нургалиев Ф.М., Нестерова И.А., Матвеева Е.Л. Активация клеточного метаболизма *in vitro* с использованием высокомолекулярных биополимеров. *Бутлеровские сообщения.* **2025**. Т.81. №2. С.94-105. DOI: 10.37952/ROI-jbc-01/25-81-2-94

Выходные данные для цитирования русскоязычной электронной версии статьи:

Чурина З.Г., Плотникова Э.М., Вафин Ф.Р., Нургалиев Ф.М., Нестерова И.А., Матвеева Е.Л. Активация клеточного метаболизма *in vitro* с использованием высокомолекулярных биополимеров. *Бутлеровские сообщения С.* **2025**. Т.10. №1. Id.5. DOI: 10.37952/ROI-jbc-01/25-81-2-94/ROI-jbc-RC/25-10-1-5

The output for citing the English online version of the article:

Zoya G. Churina, Edie M. Plotnikova, Fanil R. Vafin, Farit M. Nurgaliev, Irina A. Nesterova, Elena L. Matveeva. Activation of cellular metabolism *in vitro* using high molecular weight biopolymers. *Butlerov Communications C.* **2025**. Vol.10. No.1. Id.5. DOI: 10.37952/ROI-jbc-01/25-81-2-94/ROI-jbc-C/25-10-1-5

94 © Бутлеровские сообщения. 2025 . Т.81. №2.	г. Казань. Республика Татарстан. Россия.
---	--

^{*}Ведущий направление; +Поддерживающий переписку