Тематический раздел: Исследование новых технологий.

Утверждённая научная специальность ВАК: 1.5.4. Биохимия; 1.5.6. Биотехнология

Дополнительная научная специальность ВАК: 1.5.15. Экология

Идентификатор ссылки на объект – ROI: jbc-01/24-77-3-113 Цифровой идентификатор объекта – DOI: 10.37952/ROI-jbc-01/24-77-3-113 Поступила в редакцию 26 февраля 2024 г. УДК 579.24, 579.26.

Обезвреживание компонентов водной фазы гидротермального ожижения избыточного активного ила в биосорбционных системах

© Клементьев¹*+ Святослав Владимирович, Сироткин¹ Александр Семенович, Хасанова¹ Айгуль Айратовна, Куликова² Юлия Владимировна

¹ Кафедра промышленной биотехнологии. Институт пищевых производств и биотехнологий. Казанский национальный исследовательский технологический университет. ул. К. Маркса, 68. г. Казань, 420015. Республика Татарстан. Россия. Тел.: +7 (843) 231-89-38. E-mail: slava_klementev3715@mail.ru

² Институт живых систем БФУ им. Канта. ул. Университетская, 2. г. Калининград, 236041. Калининградская область. Россия. Тел.: +7 (401) 259-55-95

*Ведущий направление; +Поддерживающий переписку

Ключевые слова: водная фаза гидротермального ожижения, избыточный активный ил, биопленка, биосорбция.

Аннотация

Изучена способность микробных культур Pseudomonas glycinea, Paentrarthrobacter nicotinovorans и Comamonas testosteroni формировать биопленки на поверхности модифицированного цеолита, а также сорбщионного материала на основе биомассы активного ила в процессе их культивирования на водной фазе гидротермального ожижения избыточного активного ила. Отмечено, что все изучаемые культуры формировали биопленку при различном разведении водной фазы дистиллированной водой. Экспериментально показано, что культура *Pseudomonas glycinea* формировала наиболее плотную биопленку $(0.559 \pm$ 0.041 усл. ед.) при содержании водной фазы 10%, однако при увеличении содержания водной фазы до 50% массивность биопленки снижалась до 0.099 ± 0.011 усл. ед. В процессе культивирования на среде с более высоким содержанием водной фазы была отмечена культура C. testosteroni, массивность биопленки которой составила 0.178 ± 0.018 усл. ед. При совместном культивировании нескольких культур наиболее плотную биопленку формировали культуры P. nicotinovorans и C. testosteroni (0.394 \pm 0.024 усл.ед) при содержании водной фазы 50%. Высев бактерией методом истощающего штриха показал, что изучаемые культуры не проявляют друг к другу антагонистической активности. По результатам совместного культивирования микроорганизмов P. nicotinovorans и C. testosteroni в присутствии образцов модифициро-ванного цеолита в течение 5 суток было отмечено, что эффективность удаления органических соединений из водной фазы составила 81%, биогенных элементов (ионов аммония и фосфатов) – 41 и 99%, соот-ветственно. Результаты культивирования изучаемых культур в идентичных условиях с сорбционным материалом, полученным из биомассы активного ила, показали, что эффективность удаления органических соединений по истечении 5 суток достигала 84%. Однако в этом случае на 2 и 4 сутки культивирования был отмечен процесс десорбции органических соединений.

Выходные данные для цитирования русскоязычной печатной версии статьи:

Клементьев С.В., Сироткин А.С., Хасанова А.А., Куликова Ю.В. Обезвреживание компонентов водной фазы гидротермального ожижения избыточного активного ила в биосорбционных системах. *Бутлеровские сообщения*. **2024**. Т.77. №3. С.113-121. DOI: 10.37952/ROI-jbc-01/24-77-3-113

Выходные данные для цитирования русскоязычной электронной версии статьи:

Клементьев С.В., Сироткин А.С., Хасанова А.А., Куликова Ю.В. Обезвреживание компонентов водной фазы гидротермального ожижения избыточного активного ила в биосорбционных системах. *Бутлеровские сообщения С.* **2024**. Т.7. №1. Id.14. DOI: 10.37952/ROI-jbc-01/24-77-3-113/ROI-jbc-RC/24-7-1-14

The output for citing the English online version of the article:

Svyatoslav V. Klementiev, Alexander S. Sirotkin, Aigul A. Khasanova, Yulia V. Kulikova. Decontamination of aqueous phase components of hydrothermal liquefaction of excess activated sludge in biosorption systems. *Butlerov Communications C.* **2024**. Vol.7. No.1. Id.14. DOI: 10.37952/ROI-jbc-01/24-77-3-113/ROI-jbc-C/24-7-1-14

г. Казань. Республика Татарстан. Россия.	\odot E	Бутлеровские сообщения.	2024	. T.77.	. №3	113	j
--	-------------	-------------------------	------	---------	------	-----	---