Полная исследовательская публикация

Регистрационный код публикации: 13-35-8-94

Тематический раздел: Физико-химические исследования. Подраздел: Физическая химия.

Статья публикуется по материалам выступления на XX Всероссийской конференции

"Структура и динамика молекулярных систем". Яльчик-2013.

Публикация доступна для обсуждения в рамках функционирования постоянно

действующей интернет-конференции "Бутлеровские чтения". http://butlerov.com/readings/

УДК 544. Поступила в редакцию 17 мая 2013 г.

Исследование физико-химических свойств водной дисперсии энтеросорбента полисорба МП

© Шкляева* Алена Сергеевна, Васильева⁺ Оксана Валерьевна и Кучук Вера Ивановна

Санкт-Петербургская химико-фармацевтическая академия. Ул. Профессора Попова, д. 14, лит. А. г. Санкт-Петербург, 197101. Россия. Тел.: 8-981-760-99-61.

E-mail: Oxana. Vasilieva@pharminnotech.com

Ключевые слова: Полисорб МП, адсорбция, фотоколориметр, вискозиметр, адсорбат.

Аннотация

Исследован ряд физико-химических (вязкость, электрическая проводимость, электрическая подвижность, адсорбционная способность) характеристик энтеросорбента Полисорб МП. Показано, что адсорбционная активность данного препарата по отношению к ряду веществ органического и неорганического происхождения достаточно высокая. Оценено количество адсорбционных центров поверхности Полисорба, рассмотрен механизм процесса адсорбции.

Введение

В настоящее время аптечная сеть предлагает огромное количество энтеросорбентов как отечественного, так и импортного производства. Как правило, большинство производителей обещает широкую область применения предлагаемых препаратов, отмечая их высокую адсорбционную способность по отношению к огромному количеству веществ. При этом, в аннотациях, естественно, не указывается механизм процесса адсорбции и свойства дисперсий данных сорбентов.

Цель данной работы состояла в получении сведений о ряде физико-химических свойств одного из наиболее распространенных энтеросорбентов — Полисорба МП. Данный препарат представляет собой монодисперсный порошок диоксида кремния, достаточно легко диспергирующийся в воде. Полисорб обладает сорбционными, детоксикационными, антиоксидантными и мембраностабилизирующими свойствами [1].

Методики эксперимента

При анализе Полисорба были применены методы прямой кондуктометрии, макроэлектрофореза и капиллярной вискозиметрии [4]. Исследование адсорбционных характеристик в зависимости от типа адсорбата проводилось методами сравнительного кондуктометриического титрования (органические кислоты), фотоколориметрии (тяжелые металлы и гемоглобин). Адсорбция спиртов оценивалась по сравнению изотерм поверхностного натяжения до и после адсобции спиртов на тензиометре Де-Нуи.

Экспериментальная часть

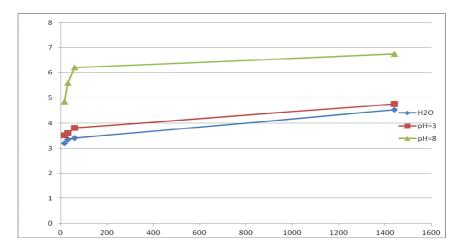
При выполнении работы массовая концентрация Полисорба для приготовления водной дисперсии выбрана согласно инструкции по применению и составляла 1 г на 25 мл воды.

Именно при данной концентрации решались такие задачи работы, как изменения рН дисперсии и ее электрической проводимости по отношению к среде, вязкость дисперсии при различных значениях рН, определение электрокинетического потенциала. Поскольку дисперсия значительное время находится в организме, особое внимание уделялось изменению во времени ряда исследуемых характеристик (табл. 1).

94	1 © Бутле	гровские сообщения.	. 2013 . T.35. №8.	г. Казань.	Республика Тата	рстан. Россия.

^{*}Ведущий направление; +Поддерживающий переписку

Табл. 1. Физико-химические характеристики Полисорба МП


		ξ, mV		
pН	ж , μS/см	1 час	1 неделя	
4.2	19.5	-48	-13	
$pH(H_2O) = 5.2$	$\varkappa (H_2O) = 3.7$			

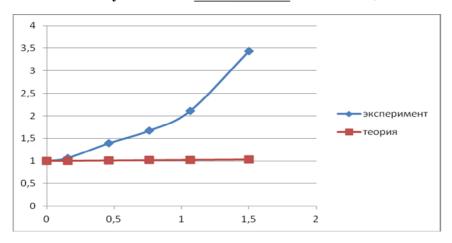
Результаты и их обсуждение

При исследовании времени «старения» в среде показано изменение рН и удельной электропроводности систем в присутствии Полисорба, указывающее на диссоциацию поверхностных группировок объекта [7, 8].

Так при диспергировании Полисорба в дистиллированной воде, значение pH суспензии уменьшалось на одну единицу, а удельная электропроводность возрастала с 3.5 мкСм/см до 30-50 мкСм/см в течение одного часа. Методом макроэлектрофореза [6] подтверждено, что в изученном интервале pH (от 3 до 8) поверхностные группировки диссоциируют по кислотному механизму (частицы сорбента заряжены отрицательно) (табл. 1).

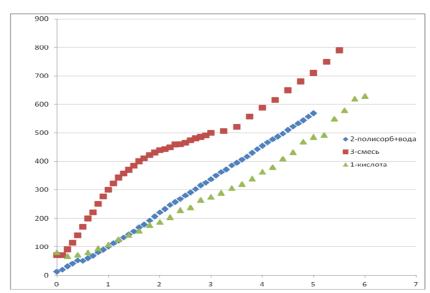
Данные по изучению вязкости дисперсии, полученные методом капиллярной вискозиметрии, показывают способность дисперсии к гелеобразованию, наступающему в течение длительного временного периода, зависящего от значения рH, при котором готовили суспензию (рис. 1). Так при рH = 5.2 для гелеобразования требовалось около 5 суток, при рH = 8 до 12 часов.

Рис. 1. Зависимость относительной вязкости дисперсий Полисорба в различных средах в зависимости от времени $\eta/\eta 0 = f(\tau)$


Немаловажное значение имеет представление о реологических свойствах суспензии и с точки зрения возникновения в ней внутренних структур. Для проверки данного положения проведены расчеты вязкости системы по уравнению Эйнштейна, которые в дальнейшем сравнивались с экспериментально полученными:

$$\eta = \eta_0 \cdot (1 + \alpha \cdot \varphi)$$

Результаты представлены на рис. 2. Показано, что расхождение теоретической и экспериментальной зависимостей относительной вязкости от объемной концентрации начинается при очень низких концентрациях, что свидетельствует о том, что растворы Полисорба, начиная с 0.15%, являются неньютоновскими жидкостями.


Изучение адсорбционной способности по отношению к модельным адсорбатам проводилось в концентрациях руководства методом сравнительного кондуктометрического титрования [3].

Основным объектом данного ряда была выбрана уксусная кислота. Выбор объекта обусловлен как его химической природой (адсорбция в ионной и молекулярной формах) так и возможностью применения методики сравнительного кондуктометрического титрования.

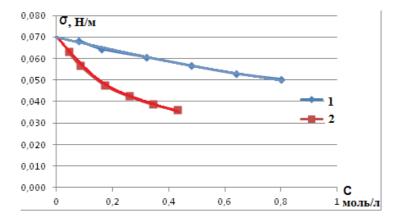
Рис. 2. Теоретическая и экспериментальная зависимость относительной вязкости от объемной концентрации Полисорба $\eta/\eta_0 = f(\phi)$

Результаты титрования представлены на рис. 3. Как видно из рисунка, титрование щелочью (NaOH) раствора кислоты, дисперсии Полисорба и системы Полисорб-кислота после установления равновесия адсорбции (24 часа) дает принципиально отличающиеся кривые титрования.

Рис. 3. Кондуктометрическое титрование кислоты (1), дисперсии Полисорба (2) и системы Полисорб-кислота после 24 час контакта (3)

Табл. 2. Свойства порошка Полисорба

	диаметр d,	плотность р,	удельная площадь			
0.09		Γ/CM^3	поверхности $S_{yд.}$, M^2/Γ			
		2.6	1.7*10 ⁵			


Это указывает как на наличие собственных кислотных группировок на Полисорбе (кривая 2), так и на возможность адсорбции ионной формы кислоты на данном адсорбенте (кривая 3). На основании полученных данных и

свойствах Полисорба (табл. 2) рассчитано количество адсорбированной ионной формы уксусной кислоты, которое составило 0.053 «частиц»/100 нм² (табл. 3).

В аннотации к препарату также отмечено, что Полисорб активно адсорбирует спирты и может применяться при алкогольном отравлении. Для исследования адсорбции спиртов (бутанола и пропанола) использован метод отрыва кольца (тензиометр Де-Нуи) [2]. Изотермы поверхностного натяжения водных растворов спиртов представлены на рис. 4.

Данные по адсорбции были получены на основании сравнения величин поверхностного натяжения растворов до адсорбции и после установления равновесия адсорбции в присутствии определенного количества Полисорба. Изотермы адсорбции представлены на рис. 4, предельное количество адсорбционных центров по отношению к спиртам – в табл. 3.

96 http://butlerov.com/ © Butlerov Communications. 2013. Vol.35. No.8. P.94-99.

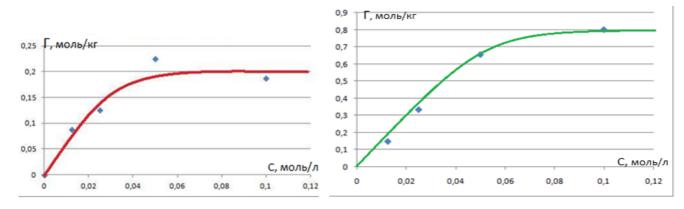


Рис. 4. Изотермы поверхностного натяжения водных растворов спиртов (пропанола (1) и бутанола (2))

Поскольку многие тяжелые металлы, такие как железо, медь, цинк, молибден, участвуют в биологических процессах и в определенных количествах и являются необходимыми для функционирования организма человека микроэлементами, существенным этапом исследования адсорбционной способности Полисорба являлось изучение адсорбции ряда элементов — ${\rm Fe}^{3+}$ и ${\rm Cu}^{2+}$.

Определение количества адсорбированных ионов рассчитывалось на основании данных фотоколориметрии.

Калибровочные графики для расчета концентраций ионов получены при аналитической длине волны 440 нм (для Fe^{3+}) и 590 нм (для ионов Cu^{2+}). Полученные изотермы адсорбции представлены на рис. 5, 6.

Рис. 5. Изотерма адсорбции Fe^{3+}

Рис. 6. Изотерма адсорбции Cu²⁺

На основании данных о характеристиках Полисорба, в частности об удельной поверхности (табл. 2), и величине предельной адсорбции (моль/кг) в расчете на массу адсорбента рассчитаны максимальные количества адсорбата на единице (100 нм²) площади, что позволяет в значительной мере получить представления о механизме адсорбции различных объектов (табл. 3).

Табл. 3. Сравнительная характеристика предельной адсорбции

адсорбат	H ⁺	СН₃СООН	Пропанол Бутанол	Fe ³⁺	Cu ²⁺
«частиц»/100 нм ²	0.053	0.067	0.795 0.76 2.25·10 ⁻³	0.071	0.282
моль/кг	$0.15 \cdot 10^{-3}$	$0.19 \cdot 10^{-3}$	$2.25 \cdot 10^{-3}$	$0.2 \cdot 10^{-3}$	$0.8 \cdot 10^{-3}$

Для изучения адсорбции биологически активных веществ было изучено поведение энтеросорбента по отношению к гемоглобину. Особая сложность при проведении эксперимента заключалась в том, что полученная при контакте с гемоглобином дисперсная система практически не седиментировала, что не позволяло определять равновесную концентрацию гемоглобина в растворе после адсорбции фотоколориметрическим методом.

В то же время, при центрифугировании системы, раствор оставался практически бесцветным, что указывало на полную адсорбцию гемоглобина в исследованном интервале концентраций $(0.5 \, \Gamma/\pi - 1 \, \Gamma/\pi)$.

Для проверки положения о возможной седиментации гемоглобина при центрифугировании (без протекания процесса адсорбции) параллельно проведен эксперимент по разделению дисперсии и равновесного раствора на бумажном фильтре с диаметром пор 390 нм с холостой пробой. Показана практически полная адсорбция гемоглобина при всех концентрациях, что позволило рассчитать его максимальную (в исследованных условия) адсорбцию, выраженную в г/кг.

Расчет количества адсорбированного гемоглобина в величинах [моль/кг] и [частиц / 100 нм²], как того требует данные табл. 3, был затруднен, так как точный аминокислотный состав исследованного образца гемоглобина был неизвестен.

Теоретически была рассчитана поверхность, занимаемая 1 молекулой, исходя из положения:

$$S_{y_{\!\mathcal{I}}}\!=S_0\!\cdot\!N_a\!\cdot\!\Gamma_{\!\scriptscriptstyle \infty}$$

где $S_{v\pi}$ – удельная поверхность Полисорба (м²/кг); S_0 – доля поверхности, занимаемая молекулой адсорбата при максимальной адсорбции; N_a – число Авогадро; Γ_{∞} – предельная адсорбция (моль/кг).

Имея величину максимально достигнутой адсорбции $\Gamma = 0.365 \times 10^{-3}$, (принятой за Γ_{∞}) в расчете на [моль/кг] взятой исходя из молярной массы (согласно Wikipedia M = 64458 г/моль) получили площадь, занимаемую 1 молекулой:

$$S_0 = 1.7 \cdot 10^8 / 6 \cdot 10^{23} \cdot 0.365 \cdot 10^{-3} = 0.776 \cdot 10^{-12} \text{ m}^2 = 0.776 \text{ mkm}^2$$

Заключение

На основании полученных результатов можно судить о свойствах поверхности данного энтеросорбента, поведении его при контакте с различными средами организма и адсорбционной способности по отношению к ряду адсорбатов.

- 1. Водная дисперсия Полисорба имеет слабокислое значение рН, частицы в исследованном интервале рН заряжены отрицательно.
- 2. При длительном контакте со средой происходит структурирование системы, в значительной мере зависящее от рН.
- 3. Отмечается хорошая адсорбция ряда спиртов и органических кислот.
- 4. Адсорбция ионов тяжелых металлов и гемоглобина также значительна, что следует учитывать при назначении данного энтеросорбента.

Выводы

- 1. Способность водной дисперии Полисорба МП, представляющего собой монодисперсный порошок диоксида кремния, к гелеобразованию, зависит от значения рН, при котором готовится суспензия (при рН = 5.2 для гелеобразования требуется около 5 суток, при рН = 8 до 12 часов).
- 2. Полисорб МП, представляющий собой монодисперсный порошок диоксида кремния, хорошо адсорбирует ряд спиртов (пропиловый, бутиловый), органических кислот, а также ионы тяжелых металлов (железо, медь).

Литература

- 1	11	Госул	арственный	neectr	пека	CTRCHHLIX	спелств —	пежим	поступа	W/W/W/ or	is rosminz	drav ri
L	. * 」	100,4	aperbernibin	Peccip	JIOICA	CIDCIIIIDIII	ородоть	Pennin	Acciding.	** ** ** **	15.1 051111112	u1 u 1 .1 c

ИСС	<i>ГЛЕДОВАНИЕ</i>	ФИЗИКО-	ХИМИЧЕСК.	ИХ СВОЙСТВ	ВОДНОЙ ДИСПЕІ	РСИИ			94-99
[2]	Поборожения	***			. Под обучей вод	T014T0100	Arra ream	****	-mad

- [2] Лабораторный практикум по коллоидной химии. Под общей ред. доктора физ-мат. наук, проф. Скворцова А.М. *СПб.: Изд-во СПХФА.* **2009**. 112c.
- [3] Практикум по физической и коллоидной химии: Учеб. пособие для фармацевтических вузов и факультетов. Бугреева Е.В., Евстратова К.И., Купина Н.А. и др.; Под ред. Евстратовой К.И. *М.: Высш. шк.* **1990**. 255с.
- [4] Физическая и коллоидная химия: Учебник. Под ред. проф. Беляева А.П. *М.: ГЭОТАР Медиа.* **2008**. 704с.
- [5] Физическая и коллоидная химия: Учеб. для фарм. вузов и факультетов. Под ред. Евстратовой К.И. *М.: Высш. шк.* **1990**. 487с.
- [6] Физическая и коллоидная химия. Практикум: методическое пособие. Под ред. проф. Беляева А.П. *СПб.: Изд-во СПХФА.* **2010**. 240с.
- [7] Евстратова К.И., Кучук В.И. Изучение адсорбции органических кислот на поверхности порошка из камня «шунгит». Сборник тезисов докладов международной конференции Физико-химические основы новейших технологий XXI века (30 мая 4 июня 2005, Москва) **2005**. С.136.
- [8] Кучук В.И., Белякова И.В., Савкина Т.М. К вопросу об адсорбционной способности углеродистых сорбентов. Сборник тезисов докладов международной конференции Физико-химические основы новейших технологий XXI века (30 мая 4 июня 2005, Москва) **2005**. С.137.