Thematic course: Amorphous opal-cristobalite silica as renewable stuff for organosilicon and silicate synthesis. Part 4.

Synthesis and structural characteristics of tris(2-hydroxyethyl)ammonium maleate

© Sergey V. Loginov, ${ }^{1}$ Dmitry A. Gordeev, ${ }^{1}$ Igor A. Dain, ${ }^{1}$ and Evgeny N. Ofitserov ${ }^{2}{ }^{*+}$
${ }^{1}$ SRCHTEOC. Enthusiasts Highway, 38. Moscow 111123. Russia. E-mail: florasilik@yandex.ru
${ }^{2}$ Russian Chemical-Technological University Named after D.I. Mendeleev.
Miusskaya Sq., 9. Moscow, 125047. Russia. Phone: +7 (495) 978-32-61. E-mail: ofitser@mail.ru

*Supervising author, ${ }^{+}$Corresponding author
Keywords: atranes, protatranes, tris-(2-hydroethyl)ammoniummaleate, molecularstructure, hydrogenbond, X-ray crystallography.

Abstract

Crystalline protatranic structure features of triethanolamine and maleic acid salt were studied. Crystallinestructureof tris(2-hydroxyethyl)ammonium maleate was detected ($\mathrm{a}=5.5882(6) \AA, \mathrm{b}=$ $10.4152(13) \AA, c=12.2523(17) \AA ; a=68.284(10)^{\circ}, \beta=85.301(10)^{\circ}, \gamma=82.432(10)^{\circ} ; Z=2$, group $\left.P-1\right)$. Crystallinestructuralsubunits - pseudocyclicacidic maleate anion, protatranictris(2-hydroxyethyl)ammonium cation- form the chair structure, stabilized by hydrogen bonds system, electrostatic and π - π interactions.

There was shown the impact of direct electrostatic interactions and anion structure on protatranic structure stabilization and monosubstituted product formation for maleic acid triethanolammonium salt.

\qquad
\qquad

