Полная исследовательская публикация

Тематический раздел: Биохимические исследования.

Идентификатор ссылки на объект – ROI: jbc-01/18-56-12-162 Подраздел: Биотехнология.

Цифровой идентификатор объекта – https://doi.org/10.37952/ROI-jbc-01/18-56-12-162

Публикация доступна для обсуждения в рамках функционирования постоянно

действующей интернет-конференции "*Бутлеровские чтения*". http://butlerov.com/readings/ УДК 628.336; 628.381.1. Поступила в редакцию 10 декабря 2018 г.

Оценка токсичности активного ила в технологиях биологической и реагентной очистки сточных вод

© Сибиева¹⁺ Линиза Мансуровна, Вдовина¹ Татьяна Владимировна, Сироткин¹* Александр Семенович, Дегтярева² Ирина Александровна, Вахитова¹ Эльмира Тагировна и Хаева¹ Полина Федоровна

¹ Кафедра промышленной биотехнологии. Казанский национальный исследовательский технологический университет, ул. К. Маркса, 68. г. Казань, 420015. Республика Татарстан. Россия. Тел.: (843)231-89-38. E-mail: liniza8@gmail.com

² Отдел агроэкологии и микробиологии. Татарский НИИАХП ФИЦ КазНЦ РАН. ул. Оренбургский тракт 20a. г. Казань, 420059. Республика Татарстан. Россия.

Тел.: (843) 277-82-74. E-mail: niiaxp2@mail.ru

Ключевые слова: биологическая очистка сточных вод, активный ил, реагентные препараты, биотестирование, фитотоксичность.

Аннотация

Исследована токсичность активного ила, образованного в процессе совместной биологической и реагентной очистки сточных вод с использованием традиционных реагентных препаратов FeCl₃ и Al₂(SO₄)₃ а также инновационных – Biokat P 500 и Nanofloc. Для определения токсичности использованы следующие тест-организмы: гидробионты Paramecium caudatum и Daphnia magna Straus, растения Triticum durum и Pisum sativum. Проанализирован активный ил после периодического и отъемнодоливного культивирования активного ила городских очистных сооружений г. Зеленодольска с соответствующими реагентными препаратами в модельном растворе сточной воды. При однократном внесении реагентов в среду активного ила по истечении 24-часового процесса биологической очистки сточных вод значительного угнетения тест-гидробионтов не наблюдалось, наибольшей степенью токсичности для инфузорий характеризовались пробы с FeCl₃ (17%) и Al₂(SO₄)₃ (14%). Данные всхожести, энергии произрастания, морфо- и биометрических показателей растений в среде полученных образцов свидетельствуют, что пробы активного ила без реагентов проявили ростстимулирующее действие на тест-организмы. Образцы с реагентами Biokat P 500 и Nanofloc снижали стимулирующий эффект ила, с FeCl₃ и Al₂(SO₄)₃ приводили к проявлению фитотоксичности. Многократное внесение коагулирующих препаратов в результате отъемно-доливного культивирования активного ила способствовало увеличению токсичности проб для Paramecium caudatum, максимальные значения токсичности -24% и 20% отмечены в пробах с FeCl₃ и Al₂(SO₄)₃, соответственно. Для образцов ила с Biokat P 500, Nanofloc степень токсичности составляет 10%. Результаты изучения токсичности активного ила на Triticum durum после 4-х суточного культивирования с многократным дозированием реагентных препаратов свидетельствуют об увеличении степени фитотоксичности проб активного ила с реагентами. Минимальные значения ингибирования роста пшеницы были характерны для проб активного ила с Biokat Р 500, для активного ила с Nanofloc эти значения были выше, но не превосходили 10%. Активный ил с FeCl₃ снижал морфометрические и биометрические параметры корней пшеницы (токсичность 11-22%), активный ил с Al₂(SO₄)₃ приводил к ухудшению роста корней пшеницы на 19-22% и проростков – на 13-14%.

^{*}Ведущий направление; *Поддерживающий переписку