Полная исследовательская публикация ____ Тематический раздел: Физико-химические исследования.

Регистрационный код публикации: 6-8-1-50 Подраздел: Неорганическая химия. Публикация доступна для обсуждения в рамках функционирования постоянно действующей интернет-конференции "Бутлеровские чтения". http://butlerov.com/readings/ УДК 541.11:546.791.6. Поступила в редакцию 10 сентября 2006 г.

Кристаллическая структура и термохимия молибдата уранила состава UO₂MoO₄

© Сулейманов Евгений Владимирович,*⁺ Алексеев Егений Витальевич, Голубев Алексей Владимирович, Медина Елена Александровна и Кузнецов Роман Геннадьевич

Кафедра химии твердого тела. Нижегородский государственный университет им. Н.И. Лобачевского. Пр-т Гагарина, 23. г. Нижний Новгород ГСП-20, 603950. Россия. Тел.: (8312) 65-62-06. E-mail:suev@uic.nnov.ru

*Ведущий направление; ⁺Поддерживающий переписку

Ключевые слова: уран, молибден, молибдат уранила, синтез, кристаллическая структура, термохимия.

Аннотация

Методом рентгеноструктурного анализа проведено уточнение кристаллической структуры молибдата уранила состава UO2MOO4. С использованием метода реакционной калориметрии определена стандартная энтальпия образования этого соединения при температуре 298 К.

Введение

Молибдат уранила состава UO₂MoO₄ принадлежит к обширному классу неорганических кислородных соединений урана, многие из которых могут образовываться как в природе, так и в ходе различных технологических процессов при переработке уранового сырья, что обуславливает актуальность комплексного исследования данных веществ. Ранее молибдат уранила состава UO2MoO4 был изучен методами рентгенофазового [1] и рентгеноструктурного [2, 3] анализов. Кроме того, в работе [4] была описана кристаллическая структура минерала умохоита, который по элементному составу (UO₂MoO₄·2H₂O) близок к изучаемому нами соединению, причем до настоящего времени не найден способ получения этого минерала в лабораторных условиях.

Для подтверждения того, что полученный нами для исследования образец по своему строению аналогичен молибдату уранила, описанному в [2, 3], нами выполнен его рентгеноструктурный и рентгенофазовый анализ. Второй, и основной задачей исследования стало определение стандартной энтальпии образования полученного соединения с помощью метода реакционной калориметрии. В дополнение к этому с использованием приближенного метода Латимера В.М. [5] рассчитана абсолютная энтропия соединения, а также энтропия и функция Гиббса образования. Мы надеемся, что знание последней величины позволит в дальнейшем с использованием метода термодинамического моделирования найти способ получения минерала умохоита в лабораторных условиях, что представляет как научный, так и практический интерес.

Экспериментальная часть

Синтез соединения. Соединение UO₂MoO₄ синтезировали из оксида молибдена (VI) (MoO₃, квалификация XЧ) и оксида урана (VI) (у-UO₃, квалификация XЧ), взятых в молярном соотношении 1:1. Температура синтеза составляла 550 °C. Отжиг шихты проводили в платиновом тигле в течение 48 часов. Для получения монокристаллов полученное вещество нагревали до 1000 °C, и затем медленно охлаждали до комнатной температуры. При этом в массе расплава образовывались желто-зеленые кристаллы молибдата уранила UO₂MoO₄.

Рентгеноструктурное и рентгенофазовое исследование. Для проведения рентгеноструктурного эксперимента был отобран кристалл с размерами 0.15×0.1×0.03 мм³. Эксперимент был выполнен на дифрактометре SMART APEX (Bruker).

Элементный состав образца для термохимических исследований определяли электронно-зондовым методом с помощью электронного микроскопа SEM 515 фирмы PHILIPS с энергодисперсионным анализатором EDAX 9900 (точность составляла 2-5 ат.%). Фазовую индивидуальность образца контролировали рентгенометрически с помощью дифрактометра ДРОН-3.0 (излучение CuK_a). ИК спектроскопическое исследование (спектрометр SPEKORD M80) и термический анализ (дериватограф системы PAULIK-PAULIK-ERDEY) показали отсутствие в образце кристаллизационной и адсорбированной воды.

Термохимический эксперимент. Тепловые эффекты химических реакций измеряли с использованием адиабатического калориметра конструкции С.М. Скуратова при Т = 298К. Эксперименты проводили в тонкостенной тефлоновой ампуле, состоящей из двух сосудов: внутреннего, куда помещали навеску исследуемого вещества, и внешнего - с раствором фтороводородной кислоты (10М). Соотношение (твердое вещество : кислота) подбирали таким образом, чтобы растворение проходило за 10-15 минут, навеска составляла не менее 50 мг и тепловой эффект растворения превышал 0.1 °С. Смешение реагентов осуществляли путём выбивания дна внутреннего сосуда. Измерение температуры в опытах регистрировали термометром сопротивления. Для выявления систематических погрешностей определяли энтальпию растворения хлорида калия (квалификация ОСЧ) в бидистиллированной воде. Суммарная погрешность определения энтальпий изученных процессов не превышала 1.5-2.0%.

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА И ТЕРМОХИМИЯ МОЛИБДАТА УРАНИЛА СОСТАВА UO₂MoO₄ ____ 50-53

Результаты и их обсуждение

При выполнении рентгеноструктурного анализа параметры элементарной ячейки и матрица ориентации были определены по 850 отражениям, и уточнены по всему массиву отражений. Уточнение поглощения было проведено в программе SADABS [6], при этом ввиду большого поглощения излучения кристаллом значение R_{int} снизился с 10% до 4%. Элементарная ячейка определена в центросимметричной пространственной группе моноклинной сингонии – Р2₁/с. Тяжелые атомы (U, Mo) были локализованы прямым методом, координаты атомов кислорода получены в результате разностных синтезов. Локализация позиций всех атомов и их уточнение в анизотропном приближении проведены в программном комплексе SHELXTL [7]. Основные экспериментальные и кристаллографические данные приведены в табл. 1, итоговые координаты атомов и эквивалентные тепловые параметры – в табл. 2, наиболее важные межатомные расстояния и углы – в табл. 3. Фрагмент кристаллической структуры UO₂MoO₄ показан на рис. 1. Эта структура построена из пентагональных бипирамид UO_7 и тетраэдров MoO_4 , соединенных вершинами в единый трехмерный каркас. Примечательно, что один из экваториальных атомов кислорода в полиэдре UO₇ одновременно принадлежит и уранильной группе из другого такого же полиздра.

Табл. 1. Параметры рентгеноструктурного эксперимента и некоторые кристаллографические характеристики структуры соединения UO2MoO4

Табл. 2. Координаты и эквивалентные тепловые параметры атомов в структуре UO2MoO4

Формула	UO_2MoO_4		
M_r	429.97		
Т, К	293(2)		
Пр. гр.	$P2_1/c$		
Параметры элементарной ячейки:			
a, Å	7.1688(8)		
b, Å	5.4604(6)		
c, Å	13.543(2)		
β°	104.526(2)		
Объем ячейки V, Å ³	513.2(1)		
Число формульных единиц Z	4		
Плотность, $D_x r/cm^3$	5.565		
Коэффициент поглощения µ, мм ⁻¹	33.902		
F(000)	728		
Дифрактометр	SMART APEX (Bruker)		
Излучение	MoK_{a}		
Размеры кристалла, мм	0.15×0.1×0.03		
Тип сканирования	φ-ω		
Область съемки	-9 <h<9; -7<k<7;="" -<="" td=""></h<9;>		
	18<1<13		
Количество рефлексов всего /	3643/1363 R _{int} =0.04		
независимых			
Количество рефлексов >4oF	1273		
Программа структурных расчетов	SHELXTL		
$S = F^2$	1.067		
$R[I>2\sigma(I)]$	$R_1 = 0.0286, wR_2 =$		
	0.0659		
R (весь массив)	$R_1 = 0.0314$, $wR_2 =$		
	0.0671		

Атом*	x/a	v/b	z/c	U_{3KB} , Å ²
U(1)	0.83440(3)	0.17702(4)	0.64788(2)	0.0070(1)
Mo(1)	0.29130(8)	0.4141(1)	0.60554(4)	0.0083(1)
O(1)	0.9239(7)	0.4509(9)	0.7181(4)	0.012(1)
O(2)	0.7581(8)	-0.103(1)	0.5861(4)	0.017(1)
O(3)	0.1336(7)	0.1690(9)	0.6071(4)	0.012(1)
O(4)	0.2007(7)	0.611(1)	0.5022(4)	0.014(1)
O(5)	0.031(2)	0.574(1)	0.7188(4)	0.021(1)
O(6)	0.5222(8)	0.3141(9)	0.6056(5)	0.017(1)

* O(1), O(2), – атомы кислорода уранильных групп UO_2^{2+} O(3)-O(6) – атомы кислорода групп MoO₄

Табл. 3. Межатомные расстояния и углы в структуре UO₂MoO₄

U(1) – O, Å		Mo(1) - O, Å			
U(1)-	O(2)	1.761(5)	Mo(1)-	O(9)	1.742(5)
	O(1)	1.802(5)		O(7)	1.748(6)
	O(6)a	2.293(5)		O(10)	1.754(5)
	O(4)b	2.298(5)		O(8)	1.755(5)
	O(5)c	2.337(5)			
	O(3)	2.345(5)			
	O(1)c	2.499(5)			
O(1)-U	J(1)-O(2)	174.4(6)°			

```
a= - x-1, y, z; b= -x+2, -y+1, -z+1; c= -x+2, y-1/2, -z+3/2
```


Рис. 1. Фрагмент кристаллической структуры UO₂MoO₄

Таким образом, полученные рентгеноструктурные результаты свидетельствуют о том, что синтезированный нами образец по своему строению полностью аналогичен молибдату уранила, описанному в работах [2, 3]. Об этом свидетельствуют и данные порошковой рентгенографии (рис. 2), согласно которым рентгенограмма синтезированного нами образца и рассчитанная на основании литературных [3] и наших рентгеноструктурных данных практически полностью подобны.

Для расчета стандартной энтальпии образования рассматриваемого соединения определяли стандартные энтальпии взаимодействия ряда веществ (Δ_r H°) с водным раствором фтороводородной кислоты (T = 298K).

Puc. 2. Рентгенограмма UO₂MoO₄, рассчитанная по рентгеноструктурным данных (верхняя линия), и полученная экспериментально (нижняя линия)

Термохимический цикл выглядел следующим образом (А^I – Li, Na, K, Rb, Cs):

$$A_{2}^{1}Mo_{2}O_{7}(\kappa) + HF(pactbop B H_{2}O) \rightarrow (pactbop 1)$$
(1)

$$UO_{3}(\kappa, \gamma) + (pactbop 1) \rightarrow (pactbop 2)$$
⁽²⁾

$$A_{2}^{1}MoO_{4}(\kappa) + HF(pactbop B H_{2}O) \rightarrow (pactbop 3)$$
 (3)

$$UO_2MoO_4(\kappa) + (pactbop 3) \rightarrow (pactbop 2)$$
(4)

По результатам пяти параллельных опытов в каждой серии были получены следующие значения $\Delta_r H^\circ$, кДж: $\Delta_r H_1^\circ = -120.1\pm0.1$ ($A^I - Li$), -103.1 ± 1.4 ($A^I - Na$), -82.7 ± 0.4 ($A^I - K$), -83.7 ± 0.1 ($A^I - Rb$), -71.2 ± 0.8 ($A^I - Cs$); $\Delta_r H_2^\circ = -89.6\pm0.7$; $\Delta_r H_3^\circ = -80.9\pm0.3$ ($A^I - Li$), -87.9 ± 0.5 ($A^I - Na$), -93.0 ± 0.8 ($A^I - K$), -89.8 ± 1.6 ($A^I - Rb$), -68.1 ± 1.3 ($A^I - Cs$); $\Delta_r H_4^\circ = -110.9\pm1.3$. Соотношения реагентов были подобраны таким образом, чтобы состав растворов, образующихся в результате реакций (2) и (4) (раствор 2), был идентичным. С учетом этого, алгебраическая сумма уравнений [(1)+(2)-(3)-(4)] приводит к уравнению (5).

$$A_{2}^{l}Mo_{2}O_{7}(\kappa) + UO_{3}(\kappa, \gamma) \rightarrow A_{2}^{l}MoO_{4}(\kappa) + UO_{2}MoO_{4}(\kappa)$$
(5)

Отсюда, в соответствии с законом Гесса, можно записать следующие выражения:

$$\Delta_{r}H_{5}^{\circ}(298) = \Delta_{r}H_{1}^{\circ}(298) + \Delta_{r}H_{2}^{\circ}(298) - \Delta_{r}H_{3}^{\circ}(298) - \Delta_{r}H_{4}^{\circ}(298)$$

$$\Delta_{f}H^{\circ}(298, UO_{2}MoO_{4}, \kappa) = \Delta_{r}H_{5}^{\circ}(298) + \Delta_{f}H^{\circ}(298, A_{2}^{I}Mo_{2}O_{7}, \kappa) + \Delta_{f}H^{\circ}(298, UO_{3}, \kappa, \gamma) - \Delta_{f}H^{\circ}(298, A_{2}^{I}MoO_{4}, \kappa)$$

По последнему соотношению с использованием экспериментально определенных величин $\Delta_r H_{1.4}^{\circ}(298)$ и справочных данных [8] (в кДж/моль: $\Delta_r H^{\circ}(298, A_2^I M_0 2 O_7, \kappa) = -2275.1\pm 1.1$ ($A^I - Li$), -2245.6 ± 1.2 ($A^I - Na$), -2291.6 ± 1.3 ($A^I - K$), -2302.6 ± 0.8 ($A^I - Cs$); $\Delta_f H^{\circ}(298, A_2^I M_0 O_4, \kappa) = -1521.0\pm 0.8$ ($A^I - Li$), -1469.0 ± 0.4 ($A^I - Na$), -1498.5 ± 0.5 ($A^I - K$), -1493.6 ± 0.6 ($A^I - Rb$), -1514.6 ± 0.4 ($A^I - Cs$); $\Delta_f H^{\circ}(298, UO_3, K, \gamma) = -1223.8\pm 2.1$) можно рассчитать энтальпию образования ураномолибдата UO₂MoO₄ по пяти термохимическим схемам.

В отношении схемы с участием соединения Rb₂Mo₂O₇ отметим, что его стандартная энтальпия образования в литературе отсутствует. В связи с этим её значение было определено нами экспериментально. Для этого определяли тепловые эффекты взаимодействия ряда веществ с водным раствором KOH (0.33M):

$$[Rb_2MoO_4 (\kappa) + MoO_3(\kappa)] + KOH (pactbor B H_2O) \rightarrow (pactbor 4)$$
(6)

$$Rb_2Mo_2O_7(\kappa) + KOH (pactbor B H_2O) \rightarrow (pactbor 4)$$
(7)

В реакциях (6) и (7) соотношения реагентов были подобраны таким образом, чтобы состав образующихся растворов (раствор 4) был идентичным. С учетом этого, разность реакций [(6) – (7)] приводит к уравнению (8).

$$Rb_2MoO_4(\kappa) + MoO_3(\kappa) \rightarrow Rb_2Mo_2O_7(\kappa)$$
, (8)

для которого справедливо следующее соотношение:

52 _____ http://butlerov.com/ _____ © Butlerov Communications. 2006. Vol.8. No.1. P.50-53.

 $\Delta_{\rm f}$ H°(298, Rb₂Mo₂O₇, κ) = $\Delta_{\rm r}$ H₈°(298) + $\Delta_{\rm f}$ H°(298, Rb₂MoO₄, κ) + $\Delta_{\rm f}$ H°(298, MoO₃, κ).

Используя это соотношение и результаты эксперимента ($\Delta_r H_6^{\circ}(298) = -73.2 \pm 0.9$ кДж, $\Delta_r H_7^{\circ}(298) =$ -19.2±0.2 кДж; число измерений n=5) и справочных данных [8] (Δ_fH°(298, MoO₃, к) = -745.2±0.5 кДж/моль) была вычислена стандартная энтальпия образования димолибдата рубидия: -2293±1 кДж/моль.

Далее, используя полученные и справочные данные, рассчитали искомую стандартную энтальпию образования UO₂MoO₄ (табл. 4), усредненное значение которой составило – 1993±3 кДж/моль.

Табл. 4. Значения стандартной энтальпии образования соединения $UO_2MoO_4(\kappa)$ при T = 298 K, определенной по различным схемам

A ^I	- Δ _f H°(298, UO ₂ MoO ₄ , K), кДж/моль
Li	1996±3
Na	1995±3
K	1986±3
Rb	1996±3
Cs	1994±3
Среднее значение	1993±3

Для расчета абсолютной энтропии молибдата уранила по методу В.М. Латимера использовали энтропийные вклады, приходящиеся в кристаллической структуре веществ на ион уранила UO2²⁺ (93.3 Дж/(моль·К)) [9] и молибдат-ион МоО₄³⁻ (85.4 Дж/(моль·К)) [10], сумма которых составляет 178.7 Дж/(моль·К). Приняв это значение для S°(298, UO₂MoO₄, K) с учетом значений абсолютной энтропии соответствующих простых веществ, приведенных в [8] (в Дж/(моль·К): S°(298, U, K) = 50.208±0.167, S°(298, Mo, K) = 28.618±0.209, $S^{\circ}(298, O_2, K) = 205.036 \pm 0.033)$, рассчитали стандартную энтропию образования рассматриваемого соединения: $\Delta_{\rm f}$ S°(298, UO₂MoO₄, K) = -515±1 Дж/(моль·K)

На основании полученных значений Δ_fS° и Δ_fH° молибдата уранила по соотношению Гиббса-Гельмгольца вычислили его стандартную функцию Гиббса образования: $\Delta_f G^{\circ}(298, UO_2MoO_4, K) = -1839 \pm 3 \kappa Дж/моль.$

Выводы

Таким образом, в результате выполнения исследования рассчитаны стандартные термодинамические функции образования молибдата уранила при температуре 298 К, которые могут быть использованы для количественного описания процессов с участием этого соединения.

Благодарности

Работа выполнена при финансовой поддержке Грантов Президента РФ для молодых докторов и кандидатов наук МД-9145.2006.3 и МК 1669.2005.2.

Литература

[1] Красовская Т.И., Поляков Ю.А., Розанов И.А. *Неорганические материалы*. **1980**. Т.16. №10. С.1824-1828.

[2] Сережкин В.Н., Ковба Л.М., Трунов В.К. Кристаллография. 1972. Т.17. Вып.6. С.1127-1130.

[3] Сережкин В.Н., Трунов В.К., Макаревич Л.Г. Кристаллография. 1980. Т.25. Вып.4. С.588-860.

[4] Krivovichev S.V., Burns P.C. The Canadian Mineralogist. 2000. Vol.38. P.717-726.

[5] Латимер В.М. Окислительные состояния элементов и их потенциалы в водных растворах. М.: Изд-во иностранной литературы. 1954. 230c

[6] Sheldrick G.M. SADABS v.2.01, Bruker/Siemens Area Detector Absorption Correction Program. Bruker AXS, Madison, Wisconsin, USA. Suite, Bruker AXS, Madison, Wisconsin, USA. 1998.

[7] Sheldrick G.M. SHELXTL v. 6.12, Structure Determination Software 2000.

[8] Термические константы веществ. Под ред. В.П. Глушко. М.: Наука. 1965-1981. Вып. І-Х.

[9] Langmuir D. Geochimica et Cosmochimica Acta. 1978. Vol.42. P.547-569.

[10] Наумов Г.Б., Рыженко Б.Н., Ходаковский И.Л. Справочник термодинамических величин. М.: Атомиздат. 1971. 239с.