Full Paper

Subsection: Catalytic and Organic Synthesis.

Registration Code of Publication: 10-21-9-14 Publication is available for discussion in the framework of the on-line Internet conference "Novel synthetic methods, structure and application of organoelemental compounds". http://butlerov.com/synthesys/ Contributed: September 18, 2010.

Additive polymerization of norborene in the presence of highly effective catalytic systems on the basis of Ni(0)/HA/BF₃·OEt₂

© Vitaliy S. Tkatch,^{1,2}*⁺ Dmitriy S. Suslov,^{1,2} Olga V. Gubaidullina,¹ Mikhail V. Bykov,^{1,2} and Marina V. Belova¹

¹Department of physical and colloidal chemistry. Chemical faculty. Irkutsk state university. K. Marx St., 1. Irkutsk, 664003. Russia. Phone: +7 (3952) 52-10-82. E-mail: tkach@chem.isu.ru ² Institute of petro- and coal- chemical synthesis at Irkutsk state university. K. Marx St., 1. Irkutsk, 664003. *Russia. Phone:* +7 (3952) 52-10-82. *E-mail: tkach@chem.isu.ru*

*Supervising author; ⁺Corresponding author

Keywords: nickel, polymerization, norborene, etherate of boron trifluoride.

Abstract

A number of catalytic systems on the basis of complexes Ni(0) and BF₃·OEt₂ have been tested in polymerization of norborene. It is established that the addition to catalytic system Ni $(PPh_3)_4 + 400BF_3 \cdot OEt_2$ of controllable quantities of water in the interval of molar relations from 2 to 104 leads to considerable growth of activity of catalytic systems (~27 times) and to the reduction of characteristic viscosity of polymers. At the use of catalytic systems (CH₂=CH₂)Ni(PPh₃)₂/ $6H_2O/200BF_3$ ·OEt₂ the activity in polymerisation of norborene increases 3 times as compared to the system Ni(PPh₃)₄/9H₂O/400BF₃·OEt₂. Influence of molar relations H₂O/Ni and norborenena/Ni, as well as the temperatures of reaction on the yield and characteristic viscosity of polynorborenes, obtained in the presence of catalytic systems Ni(acac)₂/2PPh₃/5AlEt₃/nC₂H₄/mH₂O/200BF₃·OEt₂ is studied. Among the studied proton donors (H₂O, acacH, HBF₄·OEt₂, MeOH) methanol as the activator is the most effective. The structure of polynorborenes has been studied with the methods of NMR ¹H, ¹³C and IR spectroscopy.