Registration Code of Publication: 10-22-12-27

Publication is available for discussion in the framework of on-line conference "Butlerov readings". http://butlerov.com/readings/

Contributed to editorial board: December 27, 2010.

The stable tetrahedron NaF-KF-KI-K₂CrO₄ of four-component reciprocal system Na,K || F,I,CrO₄ research

© Ekaterina M. Dvoryanova,¹ Elena O. Ignatieva,² Ivan K. Garkushin, $3*^+$ and Igor M. Kondratuk⁴

Department of general and inorganic chemistry. Samara state technical university. Molodogvardeyskaja St., 244. Samara, 443100. Samara region. Russia. Phone: +7 (846) 278-44-77. *E-mail*: ¹⁾ dvoryanova_kat@mail.ru, ²⁾ windy22@mail.ru, ³⁾ baschem@samgtu.ru, ⁴⁾ kondratuk2@mail.ru

*Supervising author; ⁺Corresponding author

Keywords: differential thermal analysis, phase equilibrium, eutectic, chemical current source.

Abstract

Integrated tetrahedron NaF-KF-KI-K₂CrO₄ of the four-component reciprocal system Na,K || F,I,CrO_4 was studied by the method of differential thermal analysis. As a result we have defined the melting point temperature, the enthalpy of melting and the compositions of the four-component eutectic mixture have been defined. The eutectic mixture is advisable to be used as fusible electrolyte for the chemical source of current.