Drganic Chemistry. Publication is available for discussion in the Internet as a material of "All-Russian Working Chemical Conference "Butlerov's Heritage-2011". http://butlerov.com/bh-2011/

Contributed to editorial board: February 4, 2011.

The supramolecular organization N-replaced amides of salicylic acid

© Nadejda M. Storojok,¹ Nadejda P. Medyanik,¹ Sergey A. Krekov,² and Aleksey P. Krisin³

¹ The Tyumen State Medical Academy Roszdrava. Odesskaya St., 54. Tyumen, 625023. Fax: +7 (3452) 20-74-21. E-mail: nadinstor@mail.ru

² The Tyumen State University the Ministries of Education of Russia. Semakova St., 10. 7 (2452) 25 15 04

Tyumen, 625003. Phone: +7 (3452) 25-15-94

³ Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences, the Russian Federation. Academician Lavrentyev St., 9. Novosibirsk, 630090. Fax: +7 (3833) 30- 97-52.

*Supervising author; ⁺Corresponding author

Keywords: amides of salicylic acid, IF-, UV-spectroscopy, hydrogen communication.

Abstract

We have studied features of a structure and the supramolecular organization *N*-replaced amides of salicylic acid by means of methods UV-, IF- spectroscopy: 1-(N-4'-gidroksifenil-3,3',5'-tri-tret-butyl)-5-etilsalitsilovoj acids (I) and 1-(N-4'-gidroksifenilpropil-3',5'-ditritret-butyl) salicylic acid (II). At partial deuteration it is shown that molecules of amides I, II are in a solution both in an untied condition, and in the form of complexes with intra- and intermolecular hydrogen communication. Screened phenolic and amides groups don't participate in formation of complexes.