Full Paper

Subsection: Organometallic Chemistry.

Registration Code of Publication: 11-24-3-26 Publication is available for discussion in the Internet as a material of "All-Russian Working Chemical Conference "Butlerov's Heritage-2011". http://butlerov.com/bh-2011/ Contributed to editorial board: January 31, 2011

Dimeric stannylenes based on substituted diethanolamines

© M. Huang,¹ Marina M. Kireenko,¹ El'mira K. Lermontova,² Andrey V. Churakov,² Yuriy F. Oprunenko,¹ Kirill V. Zaitsev,¹ Sergey S. Karlov,^{1+*} Dmitriy A. Lemenovskiy,¹ and Galina S. Zaitseva¹

¹ Chemistry Department. Moscow State University. Leninskie Gory St., 1-3. Moscow, 119991. Russia. Phone: +7 (495) 939-38-87. E-mail: marinakireenko@rambler.ru ²N.S. Kurnakov Institute of General and Inorganic Chemistry RAS. Leninskii pr., 31. Moscow, 117901. Russia. Phone: +7 (495) 952-18-03. E-mail: churakov@igic.ras.ru ^a Department of Chemistry. Henan Key Laboratory of Chemical Biology and Organic Chemistry. Key Laboratory of Applied Chemistry of Henan Universities. Zhengzhou University. University road, 7. Zhengzhou, 450052. PR China. Fax: +86-371-67979408. E-mail: wyj@zzu.edu.cn.

*Supervising author; ⁺Corresponding author

Keywords: stannylenes, tin, diethanolamines, reactivity, X-rays analysis.

Abstract

The derivatives of bivalent tin based on diethanolamines were synthesized by the reaction between the ligands mentioned and Lappert's stannylene, Sn[N(SiMe₃)₂]₂. The yields of the reactions are 40-94%. Composition and structures of the compounds produced were confirmed by elemental analyses, ¹H and ¹³C NMR spectroscopy. The structure of the compound [MeN(CH₂CH₂O)₂Sn]₂ was studied by X-rays analysis at 120 и 293 K. The chemical behavior of the compounds obtained was investigated in cycloaddition and insertion reactions.