Тематический раздел: Теоретическая и компьютерная химия. **Полная исследовательская публикация** *Подраздел:* Теория строения вещества. *Регистрационный код публикации:* 11-25-5-1

Публикация доступна для обсуждения в интернет как материал "Всероссийской рабочей химической конференции "*Бутлеровское наследие-2011*". http://butlerov.com/bh-2011/Поступила в редакцию 11 апреля 2011 г. УДК 539.18; 539.183; 530.145.

Траекторно-волновой подход к динамике электрона в атоме водорода

© Валишин Наиль Талгатович, 1,2+ Валишин Фан Талгатович и Моисев Сергей Андреевич 3*

¹ Казанский государственный технический университет им. А.Н. Туполева. Ул. К. Маркса, 10, г. Казань, 420111. Республика Татарстан. Россия. E-mail: vnailt@yandex.ru

² Философско-методологический центр-Динамизм Академии Наук Республики Татарстан. г. Казань. Россия.

*Ведущий направление; *Поддерживающий переписку

Ключевые слова: вариационный принцип, волновая функция, волновое уравнение, волновое движение, траекторное движение, водородоподобный атом.

Аннотация

В настоящей работе мы предлагаем новый подход к объяснению природы электрона, основанный на корпускулярно-волновом монизме, использующим дальнейшее развитие оптико-механической аналогии к описанию физической реальности. В предлагаемой ниже теории считается, что движение электрона происходит по траектории, наличие которой является отражением факта существования частицы, а также принимается, что всякое движение определяется волной V(x,t). При этом предполагается наличие явной связи между траекторными и волновыми уравнениями электрона. На основе данного подхода нами показано, что электронная волна, распространяясь в свободном пространстве, ведет с собой траекторию электрона. Также нами описан известный спектр энергии водородно-подобного атома, где пространственные траектории электрона приобретают неклассические свойства, отчасти схожие как с ранней теорией Бора, так и с результатами квантовой механики. При этом стационарные траектории электрона в атоме возникают в области узлов стоячей электронной волны, приобретающих вид сферических поверхностей, радиусы которых совпадает с радиусами устойчивых орбит Бора. Полученные результаты непротиворечиво описывают траекторные и волновые измерения природы электрона в единой картине корпускулярно-волнового монизма. Мы предлагаем тестовый эксперимент для проверки развиваемой теории и обсуждаем её потенциальные возможности.

Введение

Зарождение современной квантовой теории в трудах М. Планка [1] явилось результатом синтеза корпускулярного и волнового подходов к интерпретации спектра абсолютно черного тела, что привело к открытию универсальной постоянной Планка h.

В последовавших затем работах, А. Эйнштейн [2], Н Бор [3] и Луи де Бройль [4] продолжили исследование корпускулярных и волновых свойств в поведении электромагнитного поля и электрона, проведших их к появлению концепции фотона, квантования уровней энергии атомов и физических волн де-Бройля.

Наибольшего успеха в математическом обобщении волновой теории Луи де Бройля добился Э. Шредингер [5], сформулировав на этом пути названное его именем уравнение для волновой функции электрона в произвольном внешнем поле.

Математические основы квантовой механики были сформулированы ранее на языке матричной механики в работах В. Гейзенберга [6], М. Борна, В. Гейзенберга, и П. Иордана [7], исходя из необходимости построения теории электрона на основе использования таких наблюдаемых в эксперименте величин, как частоты излучения атома и матричные элементы переходов между квантовыми состояниями атома. Э. Шредингер [8] и К. Эккарт [9] вскоре

_ I/ D T		3 P	2011 T 25 N.5	1
г. Казань. Республика Татар	остан Россия (С	🕽 Бутлеровские сообщения.	. ZUTT ZO .NºO	
1. Itasans. I componina I arap	, o i will i o o o i i i i	z zymitepooentie eoootigemist.		_

³ Казанский физико-технический институт Российской Академии Наук.Ул. Сибирский тракт, 10/7. г. Казань, 420029. Россия. E-mail: samoi@yandex.ru

Полная исследовательская публикация ______ Валишин Н.Т., Валишин Ф.Т. и Моисеев С.А. установили полную математическую эквивалентность обоих подходов, использующих различные наблюдаемые в эксперименте величины.

Волновой подход по общему признанию создателей квантовой теории позволил достичь более глубокого физического понимания природы явлений микромира, однако волновая функция электрона приобрела неклассическую природу и согласно предложению М. Борна ею стали описывать амплитуду вероятности нахождения электрона в пространстве [10].

Эта статистическая интерпретация позволила математически непротиворечивым образом объединить матричную механику с волновой, объяснив наблюдаемые в эксперименте корпускулярные и волновые свойства электрона.

На этом пути матричная и волновая механики сформировались в современную квантовую теорию, к настоящему времени успешно описавшую огромное множество экспериментальных фактов. Квантовая теория света была построена П. Дираком несколько позднее, следуя переложению основных положений квантовой теории на системы с непрерывным числом степеней свободы [11], что привело также и к открытию физического вакуума.

Появление вероятностной интерпретацией волновой функции стало неожиданным результатом для самих создателей квантовой теории, что, однако, неотвратимо следовало из отсутствия классических траекторий электрона в волновом уравнении Э. Шредингера, как и в последующих за ним других уравнениях квантовой теории, построенных на аналогичных принципах.

В свою очередь, несовместимость траекторного и волнового описания (корпускулярноволновой дуализм) стала рассматриваться в качестве одного из основных постулатов теории, философски обосновываемого соотношением неопределенности Гейзенберга [12] и проявившимся возникновением в теории квантовых операторов, удовлетворяющих коммутационным соотношениям для сопряженных физических величин [5, 7, 8].

Соответственно духу математического аппарата волновой теории, в квантовой механике был введен принцип квантовой суперпозиции для волновой функции электрона (фотона и так далее), который утверждает возможность «одновременного» сосуществования различных классических траекторий движения электрона от одной точки пространства к другой. Этот принцип был заложен в основу фейнмановской формулировки квантовой теории [13] и стал одним из её ключевых положений, радикально противоречащих классической картине физиической реальности.

Последние экспериментальные достижения в изучении поведения отдельных микроскопических систем в свою очередь возрождают устойчивый интерес к проверке основных положений квантовой теории и стимулируют более глубокое переосмысление её физических основ, роль информации в теоретическом описании поведения микрочастиц [14, 15].

Продолжающиеся попытки понять парадоксальные проявления корпускулярно-волнового дуализма в движении электрона (как и других микрочастиц) также стимулируют создание новых теорий, так или иначе развивающих идеи волны-пилота Луи де Бройля [16-18], несмотря на невозможность наивной её реализации, согласно современным достижениям квантовой теории [19].

В настоящей работе мы предлагаем новый подход на этом пути, основанный на корпускулярно-волновом монизме к объяснению природы электрона. А именно, разрабатываемая ниже теория использует описание физической реальности, где принимается во внимание наличие траекторий электрона, которые служат отражением факта существования частицы, вместе с тем также принимается, что движение электрона определяется физической волной V(x,t).

Следует отметить, что в отличие от позитивистского подхода [6, 7], используемого при построении квантовой механики и основанного на описании реальности с помощью только наблюдаемых в эксперименте величин (дипольные моменты переходов, частоты излучаемых фотонов и так далее, проявляющих способ существования электрона), ниже нами используется понятие «процесса-состояния», которое вводится для описания сущности и способа существования электрона.

2	http://butlerov.com/	© Butlerov Communications.	2011 Vol 25 No 5 P 1-12

Данное понятие исходно формулируется на базе онтологии от стратегии динамизма [20], где движение (процесс) представляет *сущность* реальности, а траектория (состояние) представляет *способ существования* реальности. Ниже мы показываем, каким образом введение понятия «процесса-состояния» позволяет описать единой пространственной картиной волновые и корпускулярные измерения в поведении электрона.

Предлагаемая теория разрабатывается, используя обобщение оптико-механической аналогии к описанию траекторного и волнового поведения электрона. В начале статьи формулируются основные положения корпускулярно-волнового монизма и разъясняется их физиический смысл, основываясь на использовании локального вариационного (ЛВ) принципа [21]. В последующей части мы применяем данную теорию к описанию электрона в свободном пространстве, а также в стационарном кулоновском поле водородно-подобного атома, одного из известных тестовых объектов квантовой теории. В заключении обсуждаются полученные результаты и на их основе разъясняется обнаруженная физическая картина поведения электрона. Наконец, мы также кратко очерчиваем открывающиеся возможности в описании новых проявлений корпускулярной и волновой природы микрообъектов.

2. Локальный вариационный принцип и метод V(x,t) функции

Определим содержание ЛВ принципа. Зададим траекторное движение объекта системой дифференциальных уравнений классической физики:

$$\frac{d}{dt}x = f(x),\tag{1}$$

где вектор фазовых координат частицы $x(t) = (x_1, x_2, ..., x_n)^T$ задан в n-мерном евклидовом пространстве ($x \in R^n$), t – время.

Наряду с системой уравнений (1) также вводим волновую функцию V(x,t). Быстрота её изменения для изучаемой системы (1) будет определяться выражением $\frac{d}{dt}V = \frac{\partial}{\partial t}V + \frac{\partial}{\partial x}V^T f$. Рассмотрим изохронную вариацию быстроты изменения волновой функции $\delta(\frac{d}{dt}V) = \frac{\partial}{\partial t}\delta V + \frac{\partial}{\partial x}\delta V^T f + \frac{\partial}{\partial x}V^T \delta f$, (где $\delta V = \frac{\partial}{\partial x}V^T \delta x$, $\delta f = \frac{\partial}{\partial x}f\delta x$).

Принимаем, что при вариации быстроты изменения волновой функции $\delta(\frac{d}{dt}V)$ объект из некоторого начального состояния переходит в состояние, отличающееся новой пространственной координатой $x+\delta x$. Такой переход назовем волновым переходом объекта, при котором величина δV задает возможный волновой переход из исходного состояния в новое состояние, в то время как δx определяет траекторные вариации. При осуществлении волнового перехода пространственная вариация приобретает вид реализуемого в пространстве смещения $\delta x = dx = \dot{x}dt$.

Сформулируем ЛВ принцип: Из всех возможных переходов в новое состояние осуществляется тот, при котором в каждый момент времени быстрота изменения волновой функции V(x,t) принимает стационарное значение

$$\delta\left(\frac{d}{dt}V\right) = 0. (2)$$

Полагая выполнимость (2), также примем, что волновая функция удовлетворяет дополнительному условию на полную вариацию быстроты изменения волновой функции V(x,t):

$$\widetilde{\Delta}\left(\frac{d}{dt}V\right) = 0 , \tag{3}$$
 где $\widetilde{\Delta}(.) = \delta(.) + \frac{d}{dt}(.)\Delta t .$

Имея классические уравнения (1) и условия (2), (3), мы находим волновое уравнение для V(x,t), принимая во внимание осуществление волнового перехода ($\delta x = dx = \dot{x}dt$) в (2) и (3):

едовательская публикация

Валишин Н.Т., Валишин Ф.Т. и Моисеев С.А.

$$\widetilde{\Delta} \left(\frac{dV}{dt} \right) = \left\{ \frac{\partial^2 V}{\partial t^2} + 3 \frac{\partial^2 V}{\partial t \partial x}^T f + 2 f^T W f + 2 \frac{\partial V}{\partial x}^T \frac{df}{dt} \right\} dt$$

$$= 3 \delta \left(\frac{dV}{dt} \right) + \left(\frac{\partial^2 V}{\partial t^2} - f^T W f - \frac{\partial V}{\partial x}^T \frac{df}{dt} \right) dt = 0 \rightarrow$$

$$\frac{\partial^2 V}{\partial t^2} - f^T W f - \frac{\partial V}{\partial x}^T \frac{df}{dt} = 0 ,$$
(4)

где V(x,t) – дважды дифференцируемая, конечная, однозначная функция, $W = [\mathcal{O}_{x,x_i}^2 V(x,t)]$ -матрица функций.

Уравнение (4), согласно [33], является необходимым и достаточным условием выполнимости (3). Покажем, что имеет место равенство

$$\frac{\partial V}{\partial x}^{T} \frac{d}{dt} \dot{x} = 0$$
 (4a)

Согласно методу V-функции, движение частицы происходит так, что в каждый момент времени скорость частицы сонаправлена с градиентом волновой функции, то есть $\frac{\partial}{\partial x}V^T\dot{x} = \left|\frac{\partial}{\partial x}V\right|\dot{x}$. Отсюда получаем $\partial V/\partial x = k_2(x)\dot{x}$. Ниже мы принимаем, что поле скоростей в трехмерном пространстве совпадает с соответствующем ему полем градиента, что имеет место при $k_2(x) = k_2$ и, соответственно, получаем равенство

$$\partial V / \partial x = k_2 \dot{x} \,, \tag{4.6}$$

В случае, когда осуществлен волной переход соотношение (2) принимает вид

$$\frac{d}{dt} \left(\frac{\partial V}{\partial x}^{T} \delta \dot{x} \right) = \frac{d}{dt} \left(\frac{\partial V}{\partial x}^{T} \dot{x} dt \right) = 0 \Rightarrow \frac{\partial V}{\partial x}^{T} \dot{x} = \text{const}.$$
 (4.c)

Тогда с учетом (4b) и (4c) следует выполнение равенства (4a), то есть $\frac{\partial V}{\partial x}^T \frac{d}{dt} \dot{x} = k_2 \dot{x}^T \frac{d}{dt} \dot{x} = \frac{k_2}{2} \frac{d}{dt} (\dot{x}^T \dot{x}) = \frac{1}{2} \frac{d}{dt} (\frac{\partial V}{\partial x}^T \dot{x}) = 0 . \ B \ результате уравнение (4) \ c \ учетом (4a)$ принимает вид

$$\partial_n^2 V - \dot{x}^T W \dot{x} = 0 \tag{5}$$

Уравнения (1) и (5) описывают траекторное и волновое движение изучаемой частицы. Для нахождения решения данной системы уравнений необходимо знание граничных условий. Отметим, что в качестве граничных условий для (1) и (5) будем использовать свойства волны на траектории частицы и на границе изучаемой области пространства, определяемые методом V(x,t) функции.

Для сравнения, отметим, что в классической физике описание динамики частицы ограничиваются уравнением (1), где задается начальная координата и скорость частицы в некоторый фиксированный момент времени.

В квантовой механике, в свою очередь, используется лишь волновое уравнение Шредингера, где в качестве граничных условий используются определенные требования к волновой функции в изучаемой области пространства, определяемые в соответствии с общим положениями квантовой теории.

Предлагаемый подход к описанию поведения частицы содержит в себе систему из траекторного уравнения (1) и волнового уравнения (4), или (5). Ниже мы находим граничные условия на волну V(x,t) на траектории частицы.

1-е условие

Из равенства (4.б) получаем граничное условие для волны в точке $x=x_{\scriptscriptstyle M}$ траектории частицы

$$\partial V / \partial x \Big|_{x=x_M} = k_2 \dot{x} \Big|_{x=x_M}$$
.

2-е условие

Имея в виду осуществление волнового перехода в (2), получим

$$\frac{\partial}{\partial x}V^T\dot{x} = const. \tag{6}$$

Используя условие (6), для полной вариации (2), в свою очередь, получим равенство $\frac{d}{dt}\left(\frac{\partial}{\partial t}V\right)=0$, используя которое находим, соответственно, 2-е условие для поведения волны на траектории частицы $\frac{\partial}{\partial t}V=k_1$, где $k_{1,2}$ — некоторые постоянные.

3-е условие

На свойства волны V(x,t) следует из условия связанности волны и траектории, при котором амплитуда волны V(x,t) равна нулю в точке нахождения частицы (с координатой $x=x_{\scriptscriptstyle M}$ в момент времени $t=t_{\scriptscriptstyle o}$) $V(x=x_{\scriptscriptstyle M},t=t_{\scriptscriptstyle o})=0$.

Таким образом, суммируя, запишем общую систему уравнений траекторно-волнового движения частицы согласно методу V-функции.

$$\frac{d}{dt}x = f(x), \tag{7.1}$$

$$\frac{\partial^2}{\partial t^2}V - f^T W f = 0 , \qquad (7.2)$$

дополненные соотношениями для волны и траектории частицы

$$\partial V / \partial x \Big|_{x=x_M} = k_2 \dot{x} \Big|_{x=x_M} , \qquad (7.3)$$

$$\frac{\partial}{\partial t}V = k_1, \qquad (7.4)$$

$$V(x = x_M, t = t_o) = 0$$
. (7.5).

Отметим, что условие (7.3) является частным случаем (4.6) и вводится в качестве граничного условия для того, чтобы использовать имеющуюся в каждой задаче информацию о скорости частице в какой-то части (или на границе) пространства ($x\subseteq x_M$). Ниже условия (7.3) и (7.4), связывающие поведение волны и частицы на её траектории, конкретизируются и применяются для описания поведения волны и частицы для свободного и ограниченного в пространстве движения электрона. В свою очередь, отметим, что (7.5) является дополнительным к (7.3) условием существования траектории частицы.

Рассмотрим работу системы соотношений (7.1)-(7.5) в случае равномерного прямолинейного движения частицы, который, в свою очередь позволяет определить физический смысл постоянных k_1 и k_2 , входящих в (7.3), (7.4).

3. Равномерное движение с постоянной скоростью

Для прямолинейного движения электрона с постоянной скоростью $\dot{x} = v$ уравнение (7.2) с учетом (7.1) принимает вид:

$$\frac{\partial^2}{\partial t^2}V - \upsilon^2 \frac{\partial^2}{\partial x^2}V = 0.$$

Полная исследовательская публикация ______ Валишин Н.Т., Валишин Ф.Т. и Моисеев С.А.

Отметим, что скорость υ в волновом уравнении совпадает со скоростью движения частицы. Возможные решения, волнового уравнения, удовлетворяющие краевым условием (7.3)-(7.5), имеют вид:

$$V_1(x,t) = A\sin[\omega(x/\upsilon - t - T_a)], \qquad (8.1)$$

где $T_o = x_o / \upsilon - t_o$, а также

$$V_{\gamma}(x,t) = A\cos\{\omega(x/\upsilon - t)\}, \qquad (8.2)$$

где удовлетворяется условие $\omega(x_o/\upsilon-t_o)=\pi/2+\pi n$, A – амплитуда волны, физический смысл которой установим, учитывая соотношение (7.3), указывающее, что движение частицы происходит в направлении градиента волновой функции.

Остановимся ниже лишь на решениях (8.2), тогда условия (7.3), (7.4) принимают вид

$$\frac{\partial}{\partial x}V(x,t) = \frac{\partial}{\partial x}V_2(x,t) = (\omega/\upsilon)A\sin[\omega(x/\upsilon-t)] = k_2\upsilon, \quad (9.1)$$

$$\frac{\partial}{\partial t}V(x,t) = -\omega A \sin[\omega(x/\upsilon - t)] = k_1. \tag{9.2}$$

Так как правые части последних двух равенств являются действительными числами, то получаем

$$\omega(x/\upsilon - t) = Const + \pi n. \tag{10}$$

Таким образом, видим, что на траектории частицы x=x(t) всегда выполняется условие V(x=x(t),t)=0, то есть частица как точка двигается вместе с волной по траектории, не испытывающей расплывания во времени, при этом амплитуда волны оказывается всегда равной нулю в местоположении частицы. Ниже, руководствуясь соображениями симметрии и простоты, остановимся лишь на решении с $Const=\pi/2$. В этом случае находим следующие соотношения для амплитуды волны

$$|A|\omega = k_2 \nu^2 \,, \tag{11}$$

$$|A|\omega = k_1 \quad . \tag{12}$$

При движении с постоянной скоростью $\dot{x}=\upsilon$ согласно (10) находим также уравнение для возможной траектории частицы $x_n=\upsilon[t+(\pi/\omega)(n+1/2)]$. В свою очередь для выбранной траектории $t-x/\upsilon=C$ из (10) следует, что частота несущей волны выражается через некоторую минимальному частоту волны аналогично правилу квантования энергии осциллятора

$$\omega=\omega_n=\omega_o(n+1/2), \label{eq:omega}$$
 где $\omega_o=\pi/\mid C\mid \ (n=1,2,\ldots,).$

Принимая в (12), что $k_2=m_e$, (m_e — масса электрона), постоянная A приобретает размерность действия [κz][$_M/c$][$_M$]. В связи с чем примем $A=h/2\pi=\hbar$, где h — постоянная Планка. Из (11)-(12) имеем для постоянной $k_1=m_e \upsilon^2=2E$, где E — энергия электрона. Таким образом, получаем следующие соотношения между волновыми ($\upsilon,\lambda,\omega,A$) и траекторными (\dot{x},m,E) свойствами движения частицы

$$\upsilon = \dot{x}, \ \omega = \frac{m_e \dot{x}^2}{\hbar} = \frac{2E}{\hbar}, \tag{14.1}$$

$$\lambda = \frac{h}{m_e \dot{x}}, \quad A = \hbar \tag{14.2}$$

Соотношения (13) и (14.1) указывают на характер квантования частоты колебания волны и энергии частицы при её равномерном движении с постоянной скоростью υ . Согласно (14.1) энергия переносится частицей. В свою очередь, импульс частицы определяет длину волны λ (14.2), согласно известному соотношению Луи де Бройля.

По физическому смыслу волна V(x,t) характеризует свойства действия, проявляющегося в движении электрона. Таким образом, волна своим узлом связана с местоположением частицы и таким образом ведёт её, вместе с тем и частица (траектория) порождает распространяющуюся с ней волну.

Отметим, что соотношения (14.1) и (14.2), присущие движению электрона в свободном пространстве, используются в рассматриваемой ниже задаче об электроне в кулоновском поле водородно-подобного атома. Анализ данной задачи открывает новые черты в проявлении связи траекторных и волновых движений электрона, приводящих к неожиданной пространственной картине траекторий электрона в атоме, при том, что спектр энергии электрона оказывается квантованным в соответствии с известными свойствами атома водорода.

4. Электрон в кулоновском поле

Рассмотрим движение электрона в потенциальном поле. В этом случая траекторные уравнения объекта допускают существование интеграла движения

$$\frac{1}{2}m_{e}(\dot{x}_{1}^{2} + \dot{x}_{2}^{2} + \dot{x}_{3}^{2}) + U(\vec{x}) = E, \qquad (15)$$

где U(x) и E – потенциальная и полная энергии электрона.

В этом случае уравнение (7.2) примет вид

$$\frac{\partial^2 V}{\partial t^2} - \sum_{n,m=1}^3 \frac{\partial^2 V}{\partial x \partial x} \dot{x}_n \dot{x}_m = 0, \qquad (16)$$

Используя $\partial V / \partial x = k_2 \dot{x}$ при выполнении условия связи волны траектории $\dot{x}_i = \lambda_i \partial \dot{x}_i / \partial x_j$ (*i*, $j = \overline{1,3}$) [22] можно установить, что имеет место равенство

$$\frac{\partial^{2} V}{\partial x_{1}^{2}} \left(\dot{x}_{2}^{2} + \dot{x}_{3}^{2} \right) + \frac{\partial^{2} V}{\partial x_{2}^{2}} \left(\dot{x}_{1}^{2} + \dot{x}_{3}^{2} \right) + \frac{\partial^{2} V}{\partial x_{3}^{2}} \left(\dot{x}_{1}^{2} + \dot{x}_{2}^{2} \right) \\
-2 \frac{\partial^{2} V}{\partial x_{1} \partial x_{2}} \dot{x}_{1} \dot{x}_{2} - 2 \frac{\partial^{2} V}{\partial x_{1} \partial x_{2}} \dot{x}_{1} \dot{x}_{3} - 2 \frac{\partial^{2} V}{\partial x_{2} \partial x_{2}} \dot{x}_{2} \dot{x}_{3} = 0.$$
(17)

С учетом (17) уравнение (16) приобретает вид трехмерного волнового уравнения

$$\frac{\partial^2}{\partial v^2} V - v^2 \Delta V = 0 , \qquad (18)$$

где квадрат скорости определяется соотношением $\upsilon^2 = \sum_{i=1}^3 \dot{x}_i^2 = 2(E - U(x))/m_e$ согласно (15), $\Delta = \sum_{i=1}^{3} \frac{\partial^{2}}{\partial x_{i}^{2}} -$ оператор Лапласа.

В таком случае, волновое уравнение (18) принимает вид

$$\frac{\partial^2}{\partial t^2}V - \frac{2}{m} \left(E - U(x) \right) \Delta V = 0 . \tag{19}$$

Отметим вновь, что взамен решения уравнений движения (1) с заданными начальными условиями на скорость и координату частицы, как это имеет место в классической физике и планетарной модели Бора, мы имеем волновое уравнение (19) (отличающееся от известного уравнения Шредингера), которое должно удовлетворять краевым условиям на свойства волны. Уравнение (19) заслуживает особого внимания в силу его исключительной значимости. Как мы увидим ниже его решения непосредственно даёт информацию не только о волне, но и траектории электрона. Применяя метод разделения переменных V = X(x)T(t) к решению уравнения (19), получим:

$$\frac{\frac{d^2}{dt^2}T(t)}{T(t)} = \frac{2(E - U(x))\Delta X(x)}{m_e X(x)} = -\omega^2.$$
 (20)

Из (20) находим стационарное уравнение

$$\frac{2(E - U(x))}{m_a} \Delta X + \omega^2 X = 0.$$
 (21)

Для кулоновского поля водородоподобного атома $U(r) = -Ze^2/r$, уравнение (21) принимает вид

$$\left(-\beta_0^2 + \frac{\alpha}{r}\right) \Delta X + \omega^2 X = 0, \tag{22}$$
 где $\beta_0^2 = -2E/m$, $\alpha = 2Ze^2/m$.

Переходя к сферической системе координат и интересуясь лишь сферически симметричными решениями когда $X(\vec{r}) = R(r)$ (оставляя более общий случай произвольного орбитального движения для последующего анализа), из (22) получаем уравнение

$$\left(-\beta_0^2 + \frac{\alpha}{r}\right) \frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dR}{dr}\right) + \omega^2 R = 0, \qquad (23)$$

которое после замены переменных R = u/r будет иметь вид

$$\frac{d^2u}{dr^2} + \left(\frac{k_0^2\alpha}{\alpha - \beta_0^2 r} - k_0^2\right)u = 0,$$
(24)

где введены новые постоянные $\,k_0^2=\omega^2\,/\,eta_0^2=-{1\over2}\,\omega^2 m_e^{}\,/\,E$.

(24) удовлетворяет условию $u(r=r_0)=0$, Репление уравнения $r_o = \alpha \, / \, \beta_o^2 = -Ze^2 \, / \, E = Ze^2 \, / \big| E \big|, \; E < 0, \;$ которое соответствует выполнению граничного условия (7.5), при котором амплитуда волны становится равной нулю при $r = r_o$, где, соответственно, возникает траектория у электрона, (при этом радиус r_o подлежит определению).

Учитывая асимптотическое поведение волны при $r \to \infty$ запишем общее решение (24) в виде $u = u_-(r) + u_+(r) = e^{-k_0 r} f_-(r) + e^{k_0 r} f_+(r)$. Подставляя которое в (24), получим следующие уравнения:

$$f_{\pm}^{"}(r) \pm 2k_{0}f_{\pm}^{'}(r) + \frac{\beta_{1}}{r_{0} - r}f_{\pm}(r) = 0,$$
где $\beta_{1} = k_{0}^{2}\alpha/\beta_{0}^{2} = \frac{1}{2}Ze^{2}\omega^{2}m_{e}/E^{2}.$ (25)

Нетривиальные решения (25) имеют место в случае, когда функции $f_{\pm}(r)$ представимы в виде следующего степенного ряда $f_{\pm}(r) = \sum_{m=1}^{\infty} a_m^{(\pm)} \big(r_0 - r \big)^m$ (где действительно, траектория электрона становится локализованной на поверхности радиуса $r = r_o$). Уравнение (25) после данной подстановки принимает вид

$$\sum_{m=1}^{\infty} m(m-1)a_m^{(\pm)} (r_0 - r)^{m-2} \mp 2k_0 \sum_{m=1}^{\infty} m a_m^{(\pm)} (r_0 - r)^{m-1} + \beta_1 \sum_{m=1}^{\infty} a_m^{(\pm)} (r_0 - r)^{m-1} =$$

$$\sum_{m=1}^{\infty} [(m+1)m a_{m+1}^{(\pm)} \mp 2k_0 m a_m^{(\pm)} + \beta_1 a_m^{(\pm)}] (r_0 - r)^{m-1} = 0,$$
(26)

где коэффициенты ряда $a_{\scriptscriptstyle m\geq 1}^{\scriptscriptstyle (\pm)}$ удовлетворяют рекуррентному соотношению

$$(n+1)na_{n+1}^{(\pm)} \mp 2k_0na_n^{(\pm)} + \beta_1a_n^{(\pm)} = 0, \qquad (27)$$

откуда имеем

$$a_{n+1}^{(\pm)} = \Lambda_{n+1}^{(\pm)} a_n^{(\pm)}. \tag{28}$$

где $\Lambda_{n+1}^{(\pm)}=\frac{\pm\,2k_0n-eta_1}{(n+1)n}$, откуда находим, что при $n=eta_1/(2k_o)$ возникает устойчивое (финитное) движение электрона, что приводит к следующему решению

$$u_{+,n}(r) = C \exp\{k_{o,n}r\} \sum_{m=1}^{n} a_m^{(+)} (r_{o,n} - r)^m, \qquad (29)$$

где $a_m^{(+)} = 0$ при $m \ge n + 1$, С – постоянная,

$$r_{o,n} = 2\hbar^2 n^2 / (Ze^2 m_e), (30)$$

Радиус n-го состояния (30) получено из условия $r_o = -Ze^2 / E$, с учетом значения энергии n-го состояния

$$E_n = -\frac{Z^2 e^4 m_e}{2\hbar^2} \frac{1}{n^2} \,. \tag{31}$$

Соотношение (31) в свою очередь получено из условия $n^2=\beta_1^2/(2k_o)^2$, принимающего вид $E^3/\omega^2=-\frac{1}{8}Z^2e^4m_e/n^2$, с учетом связи частоты и энергии (14.1) $\omega^2=\left(2\mathrm{E}/\hbar\right)^2$.

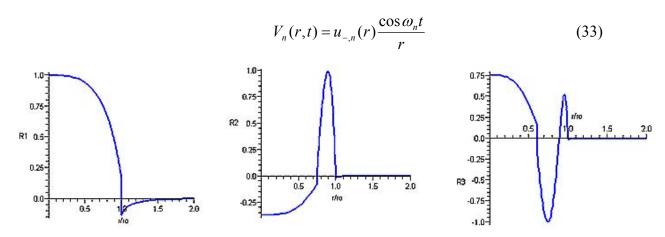
Используя свойства Вронскиана для уравнения второго порядка находим интересующее нас независимое решение для связанной волны электрона

$$u_{-,n}(r) = u_{+,n}(r) \int \frac{dr'}{u_{+,n}^2(r')}$$
(32)

© Бутлеровские сообщения. **2011**. Т.25. №5. ______ *E-mail*: journal.bc@gmail.com ______**9**

Полная исследовательская публикация _______ Валишин Н.Т., Валишин Ф.Т. и Моисеев С.А. спадающей экспоненциально с расстоянием от ядра атома $u_{-,n}(r \to \infty) \sim \exp\{-k_{o,n}r\}$. Отметим, что волна $u_{-,n}(r)$ меняет знак при переходе г через точку $r_{o,n}$, что в соответствии с условием (7.5) указывает на наличие траектории электрона в этой точке.

Отметим, что энергия n-го состояния в точности совпадает с решением, полученным в модели Бора или на основе стационарного уравнения Шредингера. Общее решение для волны электрона n-го состояния приобретает вид:



Отметим, что в соответствии с (30)-(33), на рисунок приведены решения для волны электрона для нижних трех стационарных состояний (n = 1, 2, 3). Интересно, что начиная со второго нижнего состояния амплитуда волны пересекает ноль более чем один раз, однако, только при $r=r_{o,n}$ производная волны $\frac{\partial}{\partial r}V_n(r,t)$ меняет знак этой точке, что согласно (7.3) указывает на наличие траектории электрона только на поверхности с радиусом $r_{o,n}$.

Описанные выше свойства траектории и волны $V_n(r,t)$ указывают на иное пространственное расположение электрона в атоме водорода по сравнению с известной картиной описываемой волновой функцией Шредингера. Используя полученные результаты, мы ограничимся обсуждением нескольких наиболее значимых наблюдений, оставляя для последующих исследований постановку ряда вопросов, которые могут иметь далеко идущие следствия.

5. Обсуждение и заключение

Исторически Н. Бор первым объяснил спектр атома водорода [3] на основе использования траекторного классического описания движения электрона, дополненного процедурой квантования возможных орбит электрона. Однако, используя идеи Луи де Бройля, Э. Шредингер [5] объяснил спектр атома водорода уже в духе чисто волнового подхода, отказавшись полностью в своем уравнении от использования классических траекторий электрона.

В настоящей работе мы впервые показываем, что спектр атома водорода можно описать на основе подхода, в котором в рамках единого подхода описываются волна электрона и его траектория в атоме.

Траектория и волна электрона *связаны* друг с другом, эта связь описывается в методе V-функции на основе локального вариационного принципа. В данном подходе поведение электрона на n-й устойчивом состоянии описывается волной $V_n(x,t)$ (33), амплитуда которой переходит через нуль на сфере с радиусом Бора $r_{o,n}$, что означает существование траектории электрона на сфере данного радиуса.

Уместно отметить, что в работе H. Бора электрон двигался по орбите с фиксированным расстоянием от ядра. Полученный нами результат лишь отчасти воспроизводит картину атома водорода H. Бора, но при этом траектории электрона оказываются размытыми по сфере с радиусом Бора $\mathbf{r}_{\mathrm{o,n}}$, поскольку местоположение электрона становится равномерно распределённым по всей поверхности сферы.

Подобное поведение электрона в некотором смысле аналогично равномерной пространственной делокализации электрона внутри трехмерного облака волновой функции Шре
10 http://butlerov.com/ © *Butlerov Communications.* 2011. Vol.25. No.5. P.1-12.

ТРАЕКТОРНО-ВОЛНОВОЙ ПОДХОД К ДИНАМИКЕ ЭЛЕКТРОНА В АТОМЕ ВОДОРОДА ________ 1-12 дингера, то есть, появление траектории электрона в виде сфере отражает неклассический характер поведения электрона как частицы, если сравнивать его поведение с классической картиной Резерфорда для атома водорода.

Можно сказать, что предсказываемая в настоящей работе картина поведения траекторий электрона в атоме водорода схватывает в себе определенные черты модели атома Бора и волновой теории Шредингера.

Следует также отметить, что согласно решению (30), движение электрона в n-м состоянии атома водорода приобретает чисто волновой характер, поскольку траектория электрона «замораживается» на сфере фиксированного радиуса.

Предсказываемая пространственная структура траекторий электрона несколько по иному проявляет неопределенность в поведении импульса и координаты электрона на поверхности сферы стационарного по сравнению с известной неопределенностью присущей электрону согласно решению уравнения Шредингера.

Наконец добавим, что согласно полученным решениям, траектория электрона в свободном пространстве (см. комментарий после (12)) имеет классический вид. Сопоставляя этот результат с поведением электрона в атоме водорода, можем сделать вывод, что появление того или иного характера траекторий электрона и их связи с волной во многом зависит от конкретных физических условий задачи.

Поэтому более полное понимание траекторных и волновых аспектов поведения электрона, как и других частиц, потребует постановки и изучения новых экспериментов, например, с привлечением средств современной оптики. В связи с этим мы считаем, что уравнения (7.2) и (19) отражают волновой характер движения электрона и они, судя по всему, могут явиться связующим мостом ко многим результатам, полученным ранее в квантовой механике. Например, следует отметить, что общее решение уравнения (19) для волны может содержать суперпозицию волн типа (30) с некоторыми весами, отличающиеся энергией в общем случае, что указывает, соответственно, на выполнимость принципа суперпозиции, детально исследованного в квантовой механике.

То, что предсказываемые траектории электрона в атоме водорода оказываются равномерно распределенными по сфере фиксированного радиуса, а не в облаке волновой функции Шредингера, является принципиальным отличием рассматриваемой нами картины атома водорода от хорошо известных результатов квантовой теории Шредингера.

Мы считаем, что для тестирования предлагаемой теории следует в первую очередь провести проверку предсказываемого равномерного распределения плотности электрона по сферам стационарных квантовых состояний водородно-подобного атома. Постановка данного эксперимента, судя по всему, вполне возможна в настоящее время, используя существующие возможности современной экспериментальной физики, в частности методов сканирующей туннельной и силой микроскопии [23, 24], сильно продвинувшейся к детальному анализу пространственных особенностей движения электрона в атоме.

Заключая отметим, что в настоящей работе используется подход к познанию природы электрона и её проявлений, исходя не из возможностей существующих методов измерения, а из признания его единой физической природы, которая содержит в себе без противоречий свою волновую сущность и корпускулярный (траекторный) способ существования.

Соотношения, связывающие свойства волны и частицы (14.1), (14.2), а также новое волновое уравнение (19) и его решения (31), (32) раскрывают онтологическое содержание у развиваемой теории, имеющее прямое отношение к новому продолжению оптико-механической аналогии, лишенной дуалистического подхода к описанию корпускулярных и волновых свойств электрона. Мы считаем, что предлагаемая в настоящей работе теория позволит пролить новый свет на фундаментальные основы квантовой физики.

Выводы

Сформулирован новый вариационный принцип, на базе которого получены уравнения
описывающие волновое и траекторное уравнения движения частицы (электрона), имеющие
прямое отношение к новому продолжению оптико-механической аналогии. На основе данных
уравнений рассмотрено поведение электрона в водородоподобном атоме. Найдено сфери-

© Бутлеровские сообщения. **2011**. Т.25. №5. *E-mail:* journal.bc@gmail.com

Полная исследовательская публикация _______ Валишин Н.Т., Валишин Ф.Т. и Моисеев С.А. чески симметричное решение для волнового уравнения электрона, которое описывает известный энергетический спектр водородоподобного атома. Показано, что стационарные траектории электрона в атоме возникают в области узлов стоячей электронной волны, которые приобретают вид поверхностей, имеющих вид сфер для сферически симметричных состояний, радиусы которых совпадает с радиусами устойчивых орбит Бора.

Литература

- [1] M. Planck. Über eine Verbesserung der Weinschen Spectralgleichung. *Verhandlungen der Deutschen Physikalischen Gesellschaft.* **1900**. Vol.2. P.202-204. Über irreversible Strahlungsvorgänge. *Annalen der Physik.* **1900**. Vol.1. P.69-122. Planck M. Physikalische Abhandlungen und Vorträge. *Braunschweig.* **1958**. Vol.1. P.493-600.
- [2] A. Einstein. Über einen Erzeugung und Verwandlung des Lichtes Betreffenden heuristischen Gesichtpunkt. Annalen der Physik. 1905. Vol.17. P.132-148. On a heurustic view point concerning the production and transformation of light. American Journal of Physics. 1965. Vol.33. P.367-374.
- [3] N. Bohr. On the constitution of atoms and molecules. *Philosophical Magazine*. **1913**. Vol.26. P.1-25, 476-502, 857-875.
- [4] L. De Broglie. Ondes et quanta. *Comptes Rendus*. **1923**. Vol.177. P.507-510; Recherchés sur la théorié des quanta. *Annales der Physique*. **1925**. Vol.3. P.22-128.
- [5] E. Schrödinger. *Quantisierung als Eigenwertproblem (I Mitt)*. *Annalen der Physik*. **1926**. Vol.79. P.361-376; (II Mitt) Ibid., P.489-527; (III Mitt) Ibid., Vol.80. P.437-490; (4 Mitt) Ibid., Vol.81. P.109-139.
- [6] W. Heisenberg. Über Quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift für Physik. 1925. Vol.33. P.879-883; In: Dokumente dwr Naturwissenschaft. Stuttgart: Battenderg. 1962. Vol.2. P.31-45.
- [7] M. Born, W. Heisenberg. P. Jordan Zur Quantenmechanik II. *Zeitschrift für Physik.* **1926**. Vol.35. P.557-615.
- [8] E. Schrödinger. Über das Verhältnis der Heisenberg-Born-Jordanschen Quantenmechanick zu der meinen. *Annalen der Physik.* **1926**. Vol.79. P.734-756.
- [9] C. Eckart. Operator calculus and the solutions of the equations of quantum dynamics. *Physical Review*. **1926**. Vol.28. P.711-726.
- [10] M. Born. Experiment and Theory in Physics. Cambridge University Press. 1943. P.23.
- [11] P.A.M. Dirac. Proceedings of Royal Society A. Vol.114 (27). P.243-265; The Principles of Quantum Mechanics. *Oxford: Clarendon Press.* **1930**. 4th ed. **1958**.
- [12] W. Heisenberg. Die Physikalischen Prinzipien der Quantentheorie. Leipzig. 1930.
- [13] R.P. Feynmann, A. P. Hibbs. Quantum Mechanics and Path Integrals. New York: McGraw-Hill. 1965.
- [14] H. Carmichael. An open systems approach to quantum optics. Lectures presented at the Universite Libre de Bruxelles. *Berlin, Heidelberg: Springer*. **1993**.
- [15] M.B. Mensky. Continuous quantum measurements and path integrals. *Bristol and Philadelphia: IOP Publishing.* **1993**.
- [16] D. Böhm. Quantum Theory. Englewood Cliffs: Prentice-Hall. 1951.
- [17] S. Jeffers, B. Lehnert, N. Abramson, and L. Chebotarev. J.-P. Vigier and the Stochastic Interpretation of Quantum Mechanics. Montreal: Apeiron. **2000**. 291p.
- [18] Y. Knoll, I. Yavneh. Coupled wave-particle dynamics as a possible ontology behind Quantum Mechanics and long-range interactions. arXiv:quant-ph/0605011 29 May **2006**.
- [19] J.S. Bell. On the impossible pilot wave. Foundations of Physics. 1982. Vol.12. P.989-999.
- [20] Валишин Ф.Т. Проблема методологии в концепции динамизма. *Новосибирск: Методологические концепции и школы в СССР.* **1992**. С.151-154.
- [21] Валишин Н.Т. Локальный вариационный принцип: к новой постановке прямой и обратной задачи динамики. Дисс. канд. физ.-мат. наук. *Казань: КГТУ им. А.Н.Туполева.* **1998**. 111с.
- [22] Валишин Н.Т. Метод V-функции к освоению волновых измерений в математическом моделированию. *Вестник КГТУ им. А.Н.Туполева.* **2005**. №1 C.26-28.
- [23] Y. Seo1 and W. Jhe Atomic force microscopy and spectroscopy. *Rep. Prog. Phys.* **2008**. Vol.71.
- [24] L. Gross, F. Mohn, N. Moll, P. Liljeroth, G. Meyer. The Chemical Structure of a Molecule Resolved by Atomic Force Microscopy. *Science*. **2009**. Vol.325. P.1110.

12 http://butlerov.com/ © <i>Butler</i>	cov Communications. 2011. Vol.25. No.5. P.1-12.
---	---