Electronic effects of substituent in syn and anti isomers of $[(1-R-\eta^3-C_3H_4)PdCl_2]^-$ anions: comparative DFT study

© Elena M. Evstigneeva,*⁺ Mutasim El-Hadge Elhussien, and Vitaly R. Flid*

Physical Chemistry Division. Moscow M.V. Lomonosov Institute of Fine Chemical Technology. Pr. Vernadskogo, 86. Moscow, 119271. Russia. Phone: +7 (495) 936-89-13. E-mail: eme2003@list.ru

*Supervising author; ⁺Corresponding author

Keywords: allylic complexes of palladium, DFT, polarizability, Swain-Lupton parameters, Hammett constants. NMR ^{13}C .

Abstract

In the frame of DFT method, the comparative study of two series of anionic allylic complexes of palladium of general formula $[(1-R-\eta^3-C_3H_4)PdCl_2]^-$ (1) with different syn or anti orientation of substituent have been made. Equilibrium geometries of both syn and anti isomers of anions 1 in vacuum and in polarizable dielectric continuum (PCM, $\varepsilon = 78.39$) have been calculated with B3LYP functional. Bond length, Milliken charges on atoms, energy and composition of molecular orbitals (MO) in syn-1 and anti-1 have been compared. Correlating equations of general type $E_{MO} = Const + \rho_{R^-}R^- + \rho_F F + \rho_{\alpha}\sigma_{\alpha}$, where F and R⁻ – are Swain-Lupton field and resonance parameters, σ_{α} – is a polarization constant, have been obtained. The dependence of ρ on the type of MO, syn or anti substituent orientation, on environment, and destabilizing influence of polarizing continuum as well have been discussed. For complexes 1 (R = Ph, C_2H) HOMO and HOMO-3 energies are 0.2 and 0.1 eV consequently above the values obtained from correlating equations. Theoretical NMR ¹³C chemical shifts values (δ) for *syn*-1 are in a good accordance with experimental data, for unsubstituted terminal carbon of allyl ligand C³ they linearly correlate with σ^+ and with Swain-Lupton parameters $R^+ \mu F$ as well. These δ values depend on both C^3 atom charge and Pd- C^3 bond length.