Full Paper

Subsection: Organic Chemistry.

Registration Code of Publication: 11-25-6-66 Publication is available for discussion in the Internet as a material of "All-Russian Working Chemical Conference "Butlerov's Heritage-2011". http://butlerov.com/bh-2011/ Contributed to editorial board: April 13, 2011

Thematic course: Spectral luminescence properties and complexing 5-fluorouracil tautomers with β -cyclodextrine. Report 2.

Complexing 5-fluorouracil tautomers with β-cyclodextrine

© Mikhail V. Sultanbaev,¹⁺ Sergey S. Ostakhov,^{1*} Sergey L. Khursan,^{1*} and Shamil K. Gantsev² ¹Institute of Organic Chemistry. Ufa Research Center. Russian Academy of Sciences. pr. Oktyabrya 71. Ufa, 450054. Bashkortostan Republic. Russia. *Phone:* +7 (347) 235-61-11. *E-mail: chemlum@anrb.ru* ² Bashkir State Medical University. Ministry of Health of Russian Federation. Lenina St., 3. Ufa, 450000. Bashkortostan Republic. Russia.

*Supervising author; ⁺Corresponding author

Keywords: 5-fluorouracil, β-cyclodextrine, fluorescence, quantum yield, complexing.

Abstract

The spectra of fluorescence (FL) of 5-fluorouracil (FU) tautomers in neutral water solution (pH 7) were studied depending on the content of β-cyclodextrine (CD). It was found, that FU forms fluorescent supramolecular inclusion complexes of eqimolar composition 1:1 (or 2:2) with CD. Only dominating 2,4-dioxo-tautomer FU (I) takes part in complexing, but minor hydroxy-forms do not form complexes with β -cyclodextrine. An equilibrium constant of complexing I with CD (K = 30 l/mol) as well as a quantum yield of FL of the complex [I•CD] ($\varphi_{\kappa} = 4 \times 10^{-4}$) was found. The increase in the quantum yield of FL at complexing (a quantum yield of the vacant I: $\varphi_0 = 1.5 \times 10^{-4}$) is explained by shielding electron excited FU included into the cavity of β -cyclodextrine against the "quenching" effect of a solution.