Full Paper Registration Code of Publication: 11-27-16-15 Publication is available for discussion in the framework of the on-line Internet conference "Butlerov readings". http://butlerov.com/readings/ Contributed: July 13, 2011.

Chemoinformatics methods in the thermodynamics of equilibrium. Potassium monocoronates (18C6K⁺).

© Sergey N. Bondarev,¹ Inna S. Zaitseva,² and Nikolay V. Bondarev¹⁺*

¹ V.N. Karazin Kharkiv National University. Svobody St., 4. UA-61077 Kharkov, Ukraine. *E-mail: n bondarev@ukr.net* ² Kharkov National Academy of Municipal Economy. Marshal Bazhanov St., 17. UA-61002 Kharkiv, Ukraine.

E-mail: inna.zaitseva123@yandex.ru

*Supervising author; ⁺Corresponding author

Keywords: chemoinformatics, artificial neural network, multiple regression, dataset, constant of complexation, Gibbs energy, solvation.

Abstract

Multiple linear regression and neural network modeling were applied to the analysis and prediction of the Gibbs energy (constants) stability of the complexes of 18-crown-6 with potassium cations in water organic solvents. The comparison of results of the solvation-thermodynamic analysis and the regression analysis was carried out. The significant factors which influence the stability of potassium corontes were identified. The neural network model (three-layer perceptron) was constructed and a perspective of application of neural networks for prediction of stability constants of potassium monocoronates in water-organic solvents was showed.