Подраздел: Теория строения вещества. Регистрационный код публикации: 11-28-17-1 Публикация доступна для обсуждения в рамках функционирования постоянно действующей интернет-конференции "Бутлеровские чтения". http://butlerov.com/readings/

Поступила в редакцию 10 октября 2011 г. УДК 539.182; 535.33.

Компьютерное моделирование электронного строения атома водорода и водородоподобных структур

© Потапов Алексей Алексеевич и Демидюк Алексей Игоревич

Институт динамики систем и теории управления СО РАН. Ул. Лермонтова, 134. г. Иркутск, 664033. Россия. Тел.: (3952) 42-71-00. E-mail: aleksey.potapov.icc@gmail.com

*Ведущий направление; *Поддерживающий переписку

Ключевые слова: атом водорода, водородоподобные атомы, модель, электронное строение, теория.

Аннотация

Анализируется строение атома водорода и водородоподобных атомов (объединяемых термином одноэлектронные структуры) методом моделирования, включая физическое, математическое (описание модели) и компьютерное моделирование. Основой предлагаемого подхода выступает планетарная модель Резерфорда-Бора. Исходя из имеющихся экспериментальных данных по потенциалам ионизации одноэлектронных катионов атомов, оптического спектра и поляризуемости атома водорода, показана правомерность планетарной модели ко всем одноэлектронным структурам.

Ввеление

К классу одноэлектронных структур следует отнести атом водорода и водородоподобные катионы. Атом водорода образован двумя элементарными частицами – протоном +e и электроном -e. Водородоподобные катионы отличаются от атома водорода лишь величиной положительного заряда +eZ; образуются они в результате последовательного удаления электронов с внешней оболочки атома с порядковым номером Z в таблице Д.И. Менделеева вплоть до одного. Согласно теореме Ирншоу, единственный способ сосуществования разноимённых зарядов ядра +eZ и электроноа -e является динамическая система, типа частицы на окружности, в соответствии с которой «лёгкий» электрон вращается в центральном поле «тяжёлого» ядра +eZ [1, 2].

В силу высокой симметрии модели «частица на окружности» для её описания достаточно двух взаимообусловливаемых параметров — энергии связи $\mathcal E$ и радиуса a электронной орбиты. Измеряемой величиной является потенциал ионизации I, который для водородоподобных атомов численно равен энергии связи [3,4].

Результаты и их обсуждение

1. Атом водорода

Исходным для нашего рассмотрения является **атом водорода**. Для него разработана всесторонне апробированная так называемая планетарная модель Резерфорда-Бора [2, 5], которая восходит к планетарной модели солнечной системы [6]. Согласно планетарной модели атом водорода представляет собой вращающийся электрон по круговой орбите в центральном поле ядра. Описание данной модели осуществляется в рамках классической кеплеровой задачи, в основе которой лежат законы сохранения энергии $\mathcal E$ и момента количества движения L.

В полярных координатах эти законы приводят к дифференциальным уравнениям [5]

$$\mathcal{E} = \frac{m}{2} \left(\dot{r} + r^2 \dot{\varphi}^2 \right) - \frac{Ze^2}{r} \tag{1}$$

$$L = mr^2 \dot{\varphi},\tag{2}$$

где eZ – заряд ядра атома, r – расстояние между ядром и электроном, m и e – масса и заряд электрона, φ – полярный угол.

г. Казань. Республика Татарстан. Россия. © *Бутлеровские сообщения*. **2011**. Т.28. №17. 1

ная исследовательская публикация ______ Потапов А.А. и Демидюк А.И. В предельном случае кругового движения $\dot{r}=0$, уравнение (1) можно представить в виде

$$\mathcal{E}(r) = \mathcal{E}_{K} + \mathcal{E}_{\Pi} = \frac{L^{2}}{2mr^{2}} - \frac{Ze^{2}}{r},$$
(3)

где L – момент количества движения по (2).

Здесь энергия $\mathcal{E}(r)$ – так называемая потенциальная функция, первое слагаемое которой представляет кинетическую энергию $\mathcal{E}_{_{\mathrm{K}}}$, а второе слагаемое – потенциальную энергию $\mathcal{E}_{_{\mathrm{\Pi}}}$ кулоновского взаимодействия заряда +eZ с электроном -e. На рис. 1 показана потенциальная функция $\mathcal{E}(r)$ и её составляющие — притягивательная \mathcal{E}_{Π} и отталкивательная \mathcal{E}_{K} , полученные с помощью компьютерного моделирования.

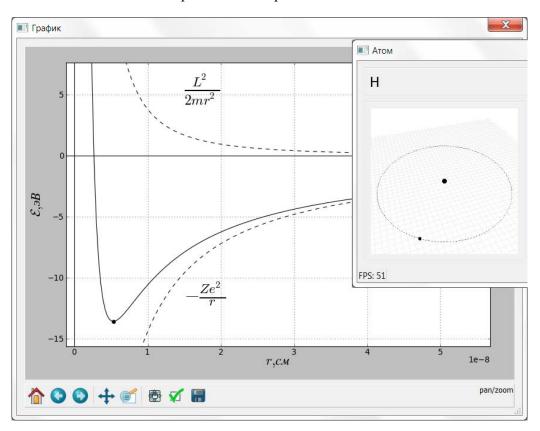


Рис. 1. Потенциальная функция

Устойчивое состояние атома соответсвует минимуму потенциальной энергии, которую можно найти стандартным путём (путём нахождения экстремума). В приближении постоянной орбитальной скорости электрона имеем

$$\frac{d\mathcal{E}}{dr} = -\frac{2L^2}{mr^3} + \frac{Ze^2}{r^2} = 0,$$

откуда находится энергия связи, соответствующая равновесному расстоянию a_z ,

$$\mathcal{E}_Z = -\frac{Ze^2}{2a_Z}. (4)$$

При Z=1, получаем выражение для энергии связи электрона с ядром атома водорода

$$\mathcal{E}_H = -\frac{e^2}{2a_R},\tag{5}$$

2 ______ http://butlerov.com/ _____ © *Butlerov Communications*. **2011**. Vol.28. No.17. P.1-10.

$$a_B = \frac{\hbar^2 n^2}{me^2},\tag{6}$$

где $\hbar=\frac{h}{2\pi}$, h- постоянная Планка, n- целое число, $a_{\mathbb{B}}=0.53\,\mathrm{E}$.

Рассчитываемая по (5) энергия \mathcal{E}_H хорошо согласуется с экспериментально определяемой величиной — потенциалом ионизации I_H , $E_H = I_H = 13.6$ эВ, что несомненно может служить критерием правомерности применяемой в исходном пункте нашего рассмотрения планетарной модели Резерфорда-Бора. С физической точки зрения она относится к всесторонне апробированной модели частицы на окружности [1, 5].

Вид потенциальной функции (рис. 1) позволяет дать наглядное объяснение *устойчивости* атома. Равновесное состояние системы (атома) соответствует минимуму функции $\mathcal{E}(r)$, для которого согласно теореме вириала выполняется условие $2\mathcal{E}_{\rm K} = \mathcal{E}_{\rm II}$ [1]. Устойчивость системы достигается благодаря закону сохранения момента количества движения L = const.

Механизм поддержания системы в устойчивом состоянии заключается в следующем. Всякое внешнее воздействие (соударения атомов, внешнее электрическое поле и т.д.) приводит к возмущению атома – к изменению его радиуса a_B на Δa . В результате этого изменяется потенциальная энергия на $\Delta \mathcal{E}_\Pi = \mathcal{E}_\Pi \frac{\Delta a}{a_B}$. Если энергия \mathcal{E}_Π увеличивается на $\Delta \mathcal{E}_\Pi$, то согласно

(3) и в соответствии с законом сохранения энергии кинетическая энергия \mathcal{E}_{K} должна уменьшиться на $\Delta\mathcal{E}_{K}$, и наоборот, уменьшение энергии \mathcal{E}_{Π} неизбежно сопроводжается увеличением энергии \mathcal{E}_{K} .

Уменьшение (или увеличение) кинетической энергии связано с соответствующим уменьшением (увеличением) орбитальной скорости v электрона, что в силу константности L=mva, вызывает ответное увеличение (уменьшение) радиуса. Система вырабатывает сигнал, направленный на компенсацию внешнего возмущения и восстановление исходного состояния $a=a_{R}$.

Надо отметить, что потенциальная функция $\mathcal{E}(r)$ соответствует классу функций Ляпунова. Согласно второму методу Ляпунова состояние системы является устойчивым, если в окресности исследуемой точки $(a=a_B)$ имеется знакопеременная функция \mathcal{E} , производная которой по времени $\frac{d\mathcal{E}}{dt}$ является знакопеременной функцией противоположного знака с функцией $\mathcal{E}[7]$. Этому условию удовлетворяет функция по (3).

Сегодня стало возможным осуществить проверку планетарной модели ещё одним независимым способом — путём сравнения данных расчёта радиуса атома на основании данных его поляризуемости непосредственно с боровским радиусом по (5). Поляризуемость является атомной константой, характеризующей способность атомов к упругой деформации и ориентации во внешнем электрическом поле.

Поляризуемость самым непосредственным образом связана с геометрией атомов [8, 9]. Характерной особенностью строения атома водорода (и водородоподобных катионов) является их дипольная структура. Их дипольный момент p образован жёстко связанными между собой ядром и электроном, $p = ea_B$. Наличие дипольного момента проявляется в необычно высокой химической активности атома водорода и водородоподобных катионов, стремящихся к образованию недипольных молекул или соединений.

Наличие у атома водорода дипольного момента p предполагает взаимодействие его с внешним электрическим полем E . Взаимодействие осуществляется по ориентационному и

деформационному механизму. Это означает, что наблюдаемая в эксперименте поляризуемость α_H имеет две составляющие, так что $\alpha_H = \alpha_{\rm op} + \alpha_{\rm n}$.

Ориентационная поляризуемость $\alpha_{\rm op}$ определяет способность атомов ориентировать свой дипольный момент p вдоль внешнего воздействующего поля E. На рис. 2 показана схема формирования ориентационного дипольного момента. Ограничивающим фактором, который препятствует свободной ориентации диполя, выступает сила вращательного движения электрона по круговой орбите.

Этой силе $F_{\rm K}$ соответствует кинетическая энергия $\mathcal{E}_{\rm K}$, которая согласно теореме вириала [1] равна половине полной энергии \mathcal{E} , так что $E_{\rm K}=13.6$ эВ. Ориентационную поляризуемость можно найти стандартным путём усреднения величины дипольного момента по ориентациям [10, 11]

$$p_{\rm op} = = \frac{\int p \sin \varphi \exp \left(\frac{-pE \sin \varphi}{\mathcal{E}_{\rm K}} \right)}{\int \exp \left(\frac{-pE \sin \varphi}{\mathcal{E}_{\rm K}} \right)},$$

где φ – угол между направлениями поля E и вектора скорости электрона.

C учётом малости энергии взаимодействия pE по сравнению с энергией \mathcal{E}_{K} , данное уравнение даёт

$$p_{\rm op} = \alpha_{\rm op} = \frac{2p^2}{3\mathcal{E}_{\rm K}},\tag{7}$$

где учтено усреднение $\sin^2 \varphi = 2/3$.

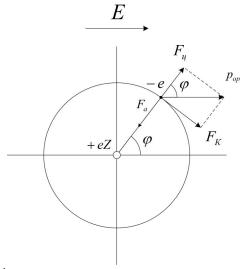


Рис. 2. Схема формирования ориентационного дипольного момента

Подстановка в (7) известных величин $E_K = 13.6$ эВ, $a_B = 0.53$ Е, $e = 4.8 \cdot 10^{-10}$ ед. СГС, даёт $\alpha_{\rm cp} \approx 0.20$ E^3 . На долю деформационной поляризуемости приходится $\alpha_{\rm g} = \alpha_H - \alpha_{\rm op} = (0.667 - 0.20)$ $E^3 = 0.467$ E^3 .

То есть дипольный момент $p_i = p_{_{\! /\! 1}}$ определяется только приращением $\Delta a_{_{\! /\! 1}}$ в выделенном направлении, задаваемым полем E. С другой стороны, величина $p_{_{\! /\! 1}}$ это результат усреднения приращений радиуса по всем направлениям, то есть $\overline{\Delta a} = \frac{\Delta a_{_{\! /\! 1}} + 2\Delta a_{_{\! /\! 1}}}{3}$. Поскольку деформация

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ЭЛЕКТРОННОГО СТРОЕНИЯ АТОМА ВОДОРОДА... __________1-10 атома возможна только в направлении поля, то $\Delta a_{\perp}=0$ и $\Delta a_{\parallel}=3\overline{\Delta a}$. Это соотношение следует учесть при составлении уравнения баланса сил. С одной стороны, это сила со стороны внешнего поля $F_E=eE$, а с другой — сила со стороны ядра, $F_a=\frac{e^2}{2a_B^2}\cdot\frac{2\Delta a}{a_B}$. Приравнивая силы $F_E=F_a$, имеем

$$\frac{e^2}{2a_R} \cdot \frac{2\Delta a}{a_R} = \frac{ep_{\parallel}}{\alpha_{\alpha}} = \frac{e^2 \Delta a_{\parallel}}{\alpha_{\alpha}} = \frac{e^2 3\Delta a}{\alpha_{\alpha}}.$$
 (8)

В результате решения уравнения (8) получаем

$$\alpha_{\pi} = 3a_{R}^{3}. \tag{9}$$

Из этого соотношения следует $a_B = \sqrt[3]{\frac{\alpha_\pi}{3}} = 0.53 \, \mathrm{E}$, что точно соответствует величине a_B по (6). Согласие рассчитываемого радиуса a_B по данным поляризуемости с экспериментом подтверждает планетарную модель Резерфорда-Бора.

Это важный результат, поскольку долгое время считалось, что невозможность описания атома водорода на основе классических законов требует нового неклассического понимания внутриатомного строения.

Вся совокупность физических свойств водорода и эффектов, таких как эффекты Штарка и Зеемана, также свидетельствуют о их «классическом происхождении» и их обусловленности дипольным строением.

В рамках планетарной модели атома представляется возможным объяснить явление фотоэлектронной ионизации. Обратимся к модели осциллятора в электронной теории Лорентца [8, 9], соглано которой можно записать уравнение движения электрона

$$m\frac{d^2r}{dt} = -m\omega_0^2 r + eE(r,t) - m\gamma \frac{dr}{dt},\tag{10}$$

где ω_0 – круговая частота колебаний электрона, γ – постоянная затухания, E – напряжённость электрического поля.

Здесь в (10) первое слагаемое представляет квазиупругую силу, пропорциональную смещению электрона r; второе слагаемое — сила, действующая со стороны поля E; третье слагаемое — сила, характеризующая затухание колебаний электрона.

В гармоническом приближении воздействующего поля $E(r)\exp(-i\omega t)$, уравнение (10) имеет решение [8, 9]

$$r(t) = \frac{eE_0 \exp(-i\omega t)}{m(\omega_0^2 - \omega^2 - i\gamma\omega)}.$$
 (11)

Смещение Δr определяет величину индуцированного дипольного момента $p_i = e\Delta r$. С другой стороны, индуцированный дипольный момент по определению равен $p_i = \alpha E$, где α – поляризуемость атома, $E = E_0 \exp(-i\omega t)$. С учётом этих соотношений можно найти поляризуемость атома

$$\alpha(\omega) = \frac{e^2}{m(\omega_0^2 - \omega^2 - i\gamma\omega)}.$$
 (12)

Полная исследовательская публикация _______ Потапов А.А. и Демидюк А.И. Из опыта следует $\gamma \to 0$. При $\omega \to 0$, $\alpha(0)$ соответствует статической поляризуемости

$$\alpha_0 = \frac{e^2}{m\omega_0^2}$$
, где $e = 4.8 \cdot 10^{-10}$ СГС, $m = 9.1 \cdot 10^{-28}$ г, $\omega_0 = 2\pi f_0$, $f_0 = 6.57 \cdot 10^{15}$ Гц.

Подстановка этих величин даёт $\alpha_0 = 0.15 \mathrm{E}^3$. В свою очередь, поляризуемость α_0 связана с радиусом атома водорода соотношением $\alpha_0 = a_B^3$ [9, 10]. С учётом данного соотношения энергию связи можно представить в виде

$$\mathcal{E}_{H} = -\frac{e^{2}}{2a_{R}} = -\frac{e^{2}}{2(\alpha_{0})^{1/3}}.$$
(13)

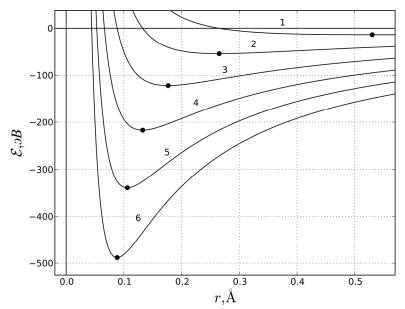
Рассчитываемая по (13) энергия $\mathcal{E}_{\!\scriptscriptstyle H}$ в пределах погрешности определения величины $\alpha_{\!\scriptscriptstyle 0}$ согласуется с измеряемой величиной $\mathcal{E}_{H}(=I_{H})$. Данное обстоятельство обосновывает применение уравнения (12), согласно которому в пределе $\omega = \omega_0$, то есть при совпадении частоты ω внешнего поля с частотой колебаний ω_0 , поляризуемость и соответственно радиус атома стремится к бесконечности.

С учётом соотношения (12)энергию \mathcal{E}_{H} можно представить в виде

$$\mathcal{E}_{H} = -\frac{e^{2}}{2(\alpha_{0})^{1/3}} = \frac{1}{2} \left[\frac{m(\omega^{2} - \omega_{0}^{2})^{1/3}}{e^{2}} \right]^{1/3}.$$
 (14)

Вдали от резонанса $\omega \ll \omega_0$, \mathcal{E}_{H} – соответствует энергии связи в стационарном состоянии. В области резонанса $\omega \approx \omega_0$, энергия $\mathcal{E}_{\scriptscriptstyle H}$ стремится к нулю, обеспечивая условие отрыва электрона от атома. В области $\omega > \omega_0$, энергия внешнего воздействия превышает энергию связи \mathcal{E}_{H} и обусловливает поступательное движение ионизированного электрона. Этим, собственно, объясняется явление фотоэлектронной ионизации. Понимание данного явления достигается в рамках классических представлений как результат и следствия резонансного взаимодействия атомов с электромагнитным полем.

2. Одноэлектронные катионы


Согласие с экспериментом также получено для энергий связи многозарядных катионов по (4) практически для всех элементов таблицы Менделеева [4]. Данный результат можно было ожидать в связи с изоморфностью структуры водородоподобных катионов атому водорода; они принадлежат одному изоструктурному ряду, подчиняющемуся закону

$$\mathcal{E}_Z = \mathcal{E}_H Z^2$$
 $\mathbf{H} \quad a_Z = \frac{a_B}{Z}$.

Достоверные данные по потенциалам ионизации I_{Z}^{Z+} одноэлектронных катионов появлились только в 70-х годах прошлого столетия.

Наличие этих данных позволило экспериментально подтвердить правомерность теории Бора по (4) для катионов с Z > 1, вплоть до Z = 100! На рис. 3 в качестве примера приведено несколько потенциальных функций одноэлектронных катионов из семейства водородоподобных атомов. Все они имеют характерный вид типа потенциальной функции, показанной на рис. 1. Их минимумы соответствуют энергии связи \mathcal{E}_Z (на рис. 3 отмечены точками).

Полученное в настоящее время согласие между рассчитываемыми энергиями \mathcal{E}_{Z} по (4) и потенциалами ионизации I_Z может служить убедительным доказательством правомерности планетарной модели Резерфорда-Бора и для водородоподобных катионов.

Рис. 3. Потенциальные функции многозарядных катионов атомов с Z = 1, 2, 3, 4, 5, 6

Таким образом, сегодня можно считать твёрдо установленным то, что атом водорода и водородоподобные сруктуры имеют планетарное строение, согласно которому точечный электрон вращается по круговой орбите в центральном поле ядра. Для этой модели достигнуто количественное описание с помощью радиуса $a_Z = \frac{a_B}{Z}$ и энергии связи $\mathcal{E}_Z = \mathcal{E}_H Z^2$.

3. Возбуждённое состояние

Планетарная модель атома и соответствующая этой модели теория Бора применимы и к атому водорода и к водородоподобным катионам в возбуждённом состоянии. В случае атома электрон может занимать дискретные состояния с энергиями $\frac{\mathcal{E}_H}{r^2}$ [4, 5]

$$\mathcal{E}_{H}^{(n)} = -\frac{e^2}{2a_{P}n^2},\tag{15}$$

где n — главное квантовое число.

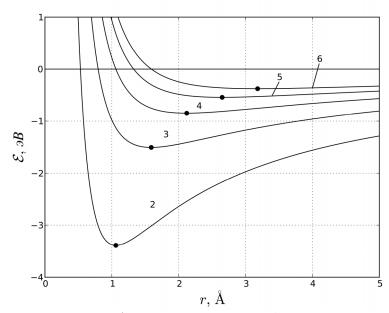
В каждом из дискретных состояний *п* атом и катионы сохраняют дипольную струкру p_n , определяемую связанными зарядами ядра и электрона на расстоянии $a_n = a_B n$, так что $p_{_{n}} = ea_{_{B}}n$. В возбуждённом состоянии атом водорода и водородоподобные катионы также сохраняют кратковременную круговую орбиту, определяемую радиусом $a_n = na_B$. Фактически данные оптических спектров атома водорода и водородоподобных катионов также могут служить убедительным доказательством планетарной модели.

Первая попытка объяснить спектр водорода была предпринята Н. Бором в его полуквантовой теории [4, 5]. Согласно принятым Бором постулатам электрон совершает устойчивое круговое движение с вполне определённой энергией.

Это стационарное движение по одной из возможных круговых орбит. Электрон может перескакивать с одной из стационарных орбит на другую, испуская или поглощая при этом определённую порцию энергии излучения точно определённой частоты. Эта частота v_{ik} соответствует изменению энергии от \mathcal{E}_{nk} до \mathcal{E}_{ni} при переходе электрона с орбиты nk на орбиту пі

$$hv_{ik} = \mathcal{E}_{ni} - \mathcal{E}_{nk}. \tag{16}$$

В пользу правомерности теории Бора по (16) в настоящее время имеются весомые доказательства [4]. Так или иначе, они сводятся к тому, что в своём движении по круговой орбите электрон не теряет энергии и потому не обнаруживает излучения; он подобен движению электронов с постоянной скоростью по почти прямолинейному проводнику, для которого отсутствие излучения энергии установлено экспериментально.


Принятое Бором условие квантования момента импульса $L=n\hbar$, где $\hbar=\frac{h}{2\pi}$, h- постоянная Планка, по сути представляет собой граничное условие резонанса типа резонанса в объёмных резонаторах, для которых выполняется равенство $l=n\lambda$, где $\lambda-$ длина полуволны, l- длина окружности резонатора.

Аналогично для модели Бора $n\lambda=2\pi r$, где λ — параметр, характеризующий периодичность движения электрона с частотой $\omega=\frac{2\pi c}{\lambda}$, где c — скорость света. Данное условие периодичности фактически является условием квантования момента количества движения $L=nmvr=n\hbar$. Из этого соотношения следует, что электрон может находится только на «разрешённых» орбитах.

Наблюдаемую в эксперименте дискретность энергии по закону $\mathcal{E} \sim \frac{\mathcal{E}_H}{n^2}$, можно объяснить следующим образом.

Переход на одну из разрешённых орбит $a_n = a_B n$ предполагает увеличение расстояния между ядром и электроном в n раз; что приводит к уменьшению кинетической энергии по сравнению с энергией исходного состояния \mathcal{E}_H в n^2 раз, что соответствует оптическому спектру водорода.

Решая уравнение (3) для заданных значений $r=a_B n$, получаем выражение для резонанса собственных частот ω_0 по (14) с частотой внешнего поля ω , которое точно соответствует (15). На рис. 4 приведены потенциальные функции водорода в возбуждённом состоянии для ряда квантовых чисел n=2,3,4,5,6.

Рис. 4. Семейство потенциальных функций водорода в возбуждённом состоянии для n = 2,3,4,5,6

Физический смысл квантования энергии связи $\mathcal{E}_H^{(n)}$ заключается в том, что в возбуждённом состоянии атома энергия связи может принимать только вполне определённые значения, соответствующие условию резонанса $\omega_0 = \omega$ по (14). В рамках планетарной модели представляется возможность объяснить природу и происхождение оптических спектров.

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ЭЛЕКТРОННОГО СТРОЕНИЯ АТОМА ВОДОРОДА... 1-10 Согласно (5) энергия связи \mathcal{E}_H и радиус a_B взаимосвязаны и взаимообусловлены. Обе эти величины характеризуют устойчивость атома в его динамическом состоянии.

Как было показано выше, поддержание устойчивого состояния атома обязано балансу сил кулоновского притяжения между ядром и электроном и сил центробежного отталкивания, возникающих в результате вращательного движения электрона по круговой орбите. Любое возмущение состояния атома проявляется в соответствующем увеличении (или уменьшении) радиуса $a_{\rm B}$.

Это приводит к уменьшению (или увеличению) энергии притяжения \mathcal{E}_Π и встречному увеличению (или уменьшению) кинетической энергии \mathcal{E}_K , действие которых направлено на восстановление первоначального состояния атома. По сути, атом представляет систему автоматического регулирования, в которой управление осуществляется по сигналу обратной связи при отклонении радиуса на Δa относительно его равновесного состояния a_R .

Процесс авторегулирования системы основан на законах сохранения энергии и момента количества движения. Пока энергия внешнего воздействия W не превышает энергию $\mathcal{E}_H^{(2)}$ первого возбуждённого состояния атома при n=2, он сохраняет своё исходное состояние благодаря механизму поддержания постоянной величины момента количества движения L=mva=const.

При достижении энергии W внешнего поля величины $\mathcal{E}_H^{(2)}$, соответствующей энергии первого возбуждённого состояния атома $\mathcal{E}_H^{(2)} = \frac{3}{4}\,\mathcal{E}_H$ и расстоянию между электроном и ядром, равному $a^{(2)} = 2a_B$, выполняется условие резонанса $\omega = \omega_{02}$ и согласно уравнению (14) энергия W внешнего поля резонансно поглощается, что обнаруживается по линии поглощения оптического спектра [5]. Состояние $\mathcal{E}_H^{(2)}$ является квазиустойчивым; оно сохранется при условии $\mathcal{E}_H^{(2)} < W < \mathcal{E}_H^{(3)}$, где $\mathcal{E}_H^{(3)}$ – энергия второго возбуждённого состояния при n=3.

В этом промежутке энергий электрон, благодаря экстремальной характеристике потенциальной функции $\mathcal{E}_H^{(n)}(r)$ (см. рис. 3) удерживается в квазиравновесном состоянии $a^{(2)}=2a_B$ по описанному выше механизму, исходя из закона сохранения момента количества движения. При достижении границы $W=\mathcal{E}_H^{(3)}$ происходит очередной резонанс $\omega=\omega_{03}$, который сопровождается поглощением энергии W внешнего поля и который регистрируется как вторая линия поглощения в оптическом спектре атома водорода. Наблюдаемое явление возникает всякий раз, когда выполняется условие резонанса $\omega=\omega_{0i}$, соответствующее дискретным расстояниям $a^{(n)}=a_B n$ и квантованным уровням энергии $\mathcal{E}^{(n)}=\frac{\mathcal{E}_H}{2}$.

Процессы излучения в определённом смысле обратны рассмотренным процессам поглощения. То есть в процессах спонтанного перехода с одного из верхних уровней на один из нижних уровней электрон в центральном поле ядра приобретает ускоренное движение. В соответствии с теорией электромагнетизма Максвелла ускоренное движение заряда создаёт изменяющееся в пространстве магнитное поле $\frac{dB}{dt} \neq 0$, которое, в свою очередь, обусловливает возникновение электрического поля $\frac{dE}{dt} \neq 0$ и так далее. В результате формируется неоднородная сферическая волна с частотой распространения ω , равная частоте излучения $v_{ik} = \frac{\omega_{ik}}{2\pi} = \frac{1}{h} \left(\mathcal{E}_{ni} - \mathcal{E}_{nk} \right)$ по (16).

Таким образом планетарная модель Резерфорда-Бора имеет убедительное физическое обоснование в виде классической модели «частица на окружности». Планетарная модель фактически представляет собой физическую модель атома водорода, раскрывающую физи-

Полная исследовательская публикация

Потапов А.А. и Демидюк А.И.

ческую сущность и строение атома в его основном, возбуждённом и ионизированном состояниях. Математическое описание планетарной модели основано на фундаментальных законах механики и электростатики. Достоверность физико-математической модели атома водорода имеет экспериментальное и теоретическое обоснование. В рамках планетарной модели Резерфорда-Бора достигнуто понимание сущности атома как конечной цели его научного познания [12]. Обоснование физико-математической модели открывает путь к построению компьютерной модели атома водорода и водородоподобных стуктур.

4. Компьютерное моделирование

Постановка и осуществление натурного эксперимента в атомной физике крайне затруднительны и компьютерное моделирование остаётся фактически единственным инструментом исследования электронного строения атомов.

Для практической реализации компьютерного моделирования разработана программа на языке *Python* с графическим интерфейсом, обеспечивающая трёхмерное отображение объекта, построение графиков, хранение структурной информации и так далее. Программа обеспечивает задание параметров атома водорода и водородоподобных структур с целью изучения пространственных и динамических характеристик моделей. При этом в качестве объекта исследования можно выбрать

- > атом водорода;
- \triangleright водородоподобные катионы в соответствии с порядковым номером Z в таблице Менделеева;
- \triangleright возбуждённое состояние атома и характеризующие его параметры порядковый номер элемента Z и главное квантовое число n.

Программа отображает структуру выбранного атома в виде вращающихся по соответствующим орбитам электронов. Кроме этого, можно отобразить окно с графиком потенциальной функции (рис. 1). Все значения, необходимые для визуализации (радиус орбиты, скорость электрона), вычисляются на основе приведённых выше формул.

Выводы

Вся совокупность имеющихся в настоящее время теоретических и экспериментальных данных подтверждает правомерность полуклассической (полуквантовой) теории Бора атома водорода и водородоподобных структур. Можно утверждать, что она обеспечивает описание известных на сегодняшный день свойств, явлений и эффектов, наблюдаемых у водородоподобных структур.

Благодарности

Работа выполнена в рамках деятельности и при поддержке Научного фонда им. А.М. Бутлерова.

Литература

- [1] Флайгер У. Строение и динамика молекул. М.: Мир. 1982. Т.1. 407с.
- [2] Бор Н. Избранные научные труды. М.: Наука. 1970. Т.1. 407с.
- [3] Бацанов С.С. Экспериментальные основы структурной химии. М.: Изд-во стандартов. 1986.
- [4] Потапов А.А. Электронное строение атомов, М.-Ижевск: Изд-во РХД. 2009. 264с.
- [5] Шпольский Э.В. Атомная физика. М.: Наука. 1974. 576с.
- [6] Рябов Ю.А. Движения небесных тел. М.: Наука. Гл. ред. физ.-мат. лит. 1988. 240с.
- [7] Потапов А.А. Оценка устойчивости атомно-молекулярных систем в ряду их возрастающей сложности. Труды IX межд. Четаевской конференции "Аналитическая механика, устойчивость и управление движением". *Иркутск*. **2007**. Т.4. С.191-204.
- [8] Келих С. Молекулярная нелинейная оптика. М.: Наука. 1981. 672с.
- [9] Потапов А.А. Деформационная поляризация: поиск оптимальных моделей. *Новосибирск: Наука.* **2004**. 511с.
- [10] Поплавко Ю.М. Физика диэлектриков. Киев: Вища школа. 1980. 400с.
- [11] Потапов А.А. Ориентационная поляризация. Новосибирск: Наука. 2000. 336с.
- [12] Потапов А.А. Наука о веществе: основы электронного строения атомов. *Бутлеровские сообщения*. **2011**. Т.24. С.16-30.

10	http://butlerov.com/	© Butlerov	Communications.	2011.	Vol.28.	No.17	'. P .1	1-10
----	----------------------	------------	-----------------	-------	---------	-------	----------------	------