Phase transformations in mechanically activated Jahn-Teller systems

© Nikolay K. Tkachev¹⁺ and Anatoly Ya. Fishman^{2*}

¹Laboratory of Interphase Phenomena. Institute of High Temperature Electrochemistry UB RAS. S. Kovalevskaya St., 22. Ekaterinburg, 620219. Russia. Phone: +7 (343) 362-31-35. *E-mail: n.tkachev@ihte.uran.ru* ² Laboratory of Statics and Kinetics of Processes. Institute of Metallurgy UB RAS. Amundsen St., 101. Ekaterinburg, 620016. Russia. Phone: +7 (343) 267-94-72. E-mail: fishman@uran.ru

*Supervising author; ⁺Corresponding author

Keywords: structural phase transformations, oxides, mechanical activation, cooperative effect of Jahn-Teller.

Abstract

It has been shown that using the theory of John-Teller cooperative effect, we can explain the phenomena caused by mechanical activation of oxides of the system Mn-O:

- > narrowing the stability zone of cooperative John-Teller (JaT) phase of hausmannite γ -Mn₃O₄;
- ▶ disappearance of the indicated phase at the grain sizes of the order 10 nm (with the temperature increase Mn₂O₃ phase is restored directly to the spinel phase β -Mn₃O₄);
- > substantial reduction, as compared to large grain samples, of the temperature of transition from metastable (at low temperatures) JaT phase in β -Mn₃O₄ to stable α -Mn₂O₃ on heating of mechanically activated (nanosized) Mn_3O_4 oxide.