Thematic Section: Preparative Chemistry.

Brief Communication

Subsection: Organoelemental Chemistry.

Registration code of publication: 12-30-4-71 Publication is available for discussion in the framework of the on-line Internet conference "New methods for synthesis, structure and application of organoelemental compounds" http://butlerov.com/synthesys/ Contributed: May 13, 2012

Diethoxyphosphorylanilide alkylation by di- and trihalogenalkanes

© Valeh M. Ismailov,¹ Iskander A. Mamedov,¹ Minavar M. Tinavasova,¹ Niftali N. Yusubov,¹ and Victor V. Moskva²*⁺

¹ Baku State University. Z. Khalilov St., 23. AZ-1148, Baku. Azerbaijan. *E-mail: niftali-yusubov@rambler.ru* ² Department of Organic Chemistry. D.I. Mendeleev Russian University of Chemical Technology. Miusskava Sq., 9. Moscow, 125047. Russia.

*Supervising author; ⁺Corresponding author Keywords: organic phosphates, polyhalogenalkanes, alkylation, heterocycles.

Abstract

Alkylation of diethyl ester of phosphorous acid anilide by1,2-dibromoethane, 1,3-dibromopropane, 1,2,3-tribromopropane and 1,2,3-trichloropropane has been studied. The reactions with dibromoalkanes have been demonstrated to proceed with the formation of phosphorus-containing heterocycles. Reactions with tribromo- and trichloropropane trend differently to form compounds of aliphatic and heterocyclic structures.