Phase composition of the products of reactions in the system Cu^{2+} – MgNH₄PO₄· $6H_2O - H_2O$ at low concentration Cu²⁺ ions in solution

© Marina Yu. Siluyanova,⁺ Galina V. Leont'eva, and Vladimir V. Volkhin*

Department of Chemistry and Biotechnology. Perm National Research Polytechnic University. Komsomolsky prospect, 29. Perm, 614990. Perm Region. Russia. *Phone/Fax:* +7 (342) 239-15-11. *E-mail: myc91-marina@mail.ru*

*Supervising author; ⁺Corresponding author Keywords: struvite, cornetite, libethenite, phase transformations, copper(II) ions, magnesium ions, ammonium ions, ion exchange.

Abstract

It was shown by chemical and physico-chemical methods that reactions in the system Cu²⁺-MgNH₄PO₄·6H₂O-H₂O result in the formation of the struvite-type phase of variable composition Mg_(1-x) $Cu_xNH_4PO_4 \cdot 6H_2O$ (0 < x < 1), the relatively unstable phase of cornetite, $Cu_3PO_4(OH)_3$, the phase of bobierrite, Mg₃(PO₄)₂ 8H₂O, and the phase Cu₃(PO₄)₂·3H₂O. In mother solutions at pH 3.9-6.0, the phase Cu₃PO₄(OH)₃ turns to Cu₃(PO₄)₂·3H₂O. When the molar ratio $n_{Cu}^{2^+}:n_{MAP}$ is high (1.73 and 2.31) and the pH value is low (3.0-4.2), libethenite, Cu₂PO₄OH, is the most stable phase. The fact of recrystallization of magnesium-ammonium phosphate hexahydrate (MAP) in the mother solution was also proven. The uptake of Cu^{2+} ions from solution was explained by ion exchange $Cu^{2+} \leftrightarrow Mg^{2+}$ with the phase MAP, trapping by MAP during its recrystallization, and by the formation of other copper-containing phosphates.