Local magnetic structure of cobalt nanoparticles on the basis of Co-59 nuclear magnetic resonance data

© Anna A. Shmyreva,¹⁺ Vladimir V. Matveev,^{2*} Marina I. Biryukova,² and Gleb Yu. Yurkov^{2,3*}

¹Department of Quantum Magnetic Phenomena. Saint-Petersburg State University. Ulianovskaya St., 1. Peterhof, Saint-Petersburg, 198504. Russia. Phone: +7 (812) 428-43-62. E-mail: annshmyreva@gmail.com ² Laboratory of Physical-Chemical Analysis of Ceramic Materials, Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences. Leninskiy pr., 49. Russia. Phone: +7 (495) 718-16-55. *E-mail: ygy76@yandex.ru*

³*All-Russian Scientific Research Institute of Aviation Materials. State Research Center of the Russian* Federation (VIAM). Radio St., 17. Moscow, 105005. Russia. Phone: +7 (499) 263-85-43.

*Supervising author; ⁺Corresponding author

Full Paper

Keywords: nanocomposites, nanoparticles, cobalt, NMR, spin-echo.

Abstract

A local magnetic structure of cobalt nanoparticles has been studied using Co-59 nuclear magnetic resonance in zero magnetic field.

Nuclear magnetic resonance spectra were obtained for the nanocrystalline cobalt (without matrix) with particles (crystallites) of 12-15 nm size. Comparison of the spectra with that of the bulk sample of cobalt has shown that the cobalt nanoparticles can be described by a "core-shell" type of structure, where the core of the nanoparticle acts as a magnetic domain, and the magnetic moments of the layers near the surface are slanted or disordered. It has been shown that the high-frequency peak of the nuclear magnetic resonance spectra (225.5-226 MHz) is related to the surface layers of nanoparticles, and the peak at the frequency of 220 MHz to the core of the nanoparticle.