Contributed: May 6, 2013.

Biochemical activity of metal nanoparticles of hyperbranched polyester polyol composites

© Marianna P. Kutyreva,^{1*+} Alfiya R. Gataulina,¹ Olga I. Medvedeva,¹ Ivan I. Stoikov,² and Nikolav A. Ulakhovich¹

¹ Department of Inorganic Chemistry. A.M. Butlerov Chemical Institute. Kazan Federal University. Kremlevskava St., 18. Kazan, 420008. Tatarstan Republic. Russia. Phone: +7 (843) 233-74-65. E-mail: Marianna.Kutyreva@kpfu.ru ² Department of Organic Chemistry. A.M. Butlerov Chemical Institute. Kazan Federal University.

Kremlevskaya St., 18. Kazan, 420008. Tatarstan Republic. Russia. *Phone:* +7 (843) 233-74-62. *E-mail: ivan.stoikov@kpfu.ru*

*Supervising author; ⁺Corresponding author

Keywords: antimycotics, proteinase of Candida albicans, metal nanoparticles, hyperbranched polyester polyols.

Abstract

Copper and cobalt nanoparticles have been synthesised on the platform of hyperbranched thirdgeneration polyesterpolypropionic acid $H30(CH_2CH_2COOH)_{22}$ by the method of chemical reduction in the media of stabilizer. According to results of X-Ray phase analysis and transmission electron microscopy it was established that samples of Cu/H30(CH₂CH₂COOH)₂₂ nanoparticles consist of 10±4 nm particles, while $Co/H30(CH_2CH_2COOH)_{22}$ samples consist of 4±1 nm for metallic cobalt and 2-5 nm for its oxide phase. We estimated and compared antiproteinase activity of stabilizers - hyperbranched polyesterpolyol H30, H30(CH₂CH₂COOH)₂₂ and composition nanoparticles of copper and cobalt on their basis towards secretory aspartic proteinase Candida albicans.