Полная исследовательская публикация

Регистрационный код публикации: 13-36-12-66

Тематический раздел: Биохимические исследования. Подраздел: Органическая химия.

Публикация доступна для обсуждения в рамках функционирования постоянно действующей

интернет-конференции "Химические основы рационального использования возобновляемых природных ресурсов". http://butlerov.com/natural_resources/

УДК 582.71:547.918. Поступила в редакцию 24 декабря 2013 г.

Количественный анализ фенольных соединений в цветках календулы лекарственной (Calendula officinalis L.) методом микроколоночной ВЭЖХ

© Кащенко Нина Игоревна и Оленников*⁺ Даниил Николаевич

Лаборатория медико-биологических исследований. Отдел биологически активных веществ. Федеральное государственное бюджетное учреждение науки Институт общей и экспериментальной биологии. Сибирское отделение РАН. Ул. Сахьяновой, б. г. Улан-Удэ, 670047. Россия. Тел.: (3012) 43-47-43. E-mail: oldaniil@rambler.ru. Факс: +7 (3012) 43-47-43

Ключевые слова: Calendula officinalis, Asteraceae, фенилиропаноиды, флавоноиды, микроколоночная ВЭЖХ.

Аннотация

Разработана методика количественного анализа 14 фенольных соединений методом микроколоночной обращенно-фазовой ВЭЖХ с двухволновым детектированием (330 и 360 нм) с применением колонки ProntoSIL-120-5-C18 (2×75 мм) и градиентной элюентной системы [0.2 М LiClO₄ в 0.006 М HClO₄ - 0.01 М додецилсульфат натрия в воде (1:1)]-ацетонитрил. Методика была применена для анализа цветков календулы лекарственной (*Calendula officinalis* L.) и некоторых препаратов (настойка, экстракты, жидкий и сухой настой, отвар). Проведено сравнительное исследование количественных показателей указанных лекарственных форм.

Введение

Календула лекарственная (*Calendula officinalis* L.) – официнальный растительный вид, цветки которого широко применяются в медицинской практике для лечения и профилактики широкого спектра заболеваний [1]. В результате химических исследований в цветках *С. officinalis* было установлено присутствие различных групп биологически активных соединений, в том числе фенилпропаноиды, флавоноиды [2], кумарины [3], тритерпеновые гликозиды [4], полисахариды [5], эфирное масло [6] и другие.

Информация о разделении фенольных соединений цветков *C. officinalis* с применением методов жидкостной хроматографии крайне ограничена, и касается в большинстве случаев определения отдельных компонентов (рутин, нарциссин, кверцетин, изорамнетин) [7, 8]. Данное обстоятельство не позволяет сформировать общую картину об индивидуальном фенольном профиле данного растительного вида.

В последнее время большим интересом пользуется метод микроколоночной ВЭЖХ (МК-ВЭЖХ), к числу преимуществ которого относятся экспрессность, экономичность и удовлетворительные метрологические показатели, в связи с чем нами рассмотрена возможность разработки простого и эффективного метода количественного определения фенольных соединений в цветках *С. officinalis* с применением обращенно-фазовой МК-ВЭЖХ с УФ-детектированием.

Экспериментальная часть

Растиительное сырье и препараты. Образцы С. officinalis (сорта 'Русский размер' и 'Солнце Египта') были выращены в открытом грунте на экспериментальных плантациях ИОЭБ СО РАН (2013 гг.) из аутентифицированных семян, полученных в Главном ботаническом саду им. Н.В. Цицина РАН (Москва, Россия). Для культивирования были использованы рекомендованные для С. officinalis агротехнические условия [9]. Сбор цветков проводили в фазу массового цветения. Образцы сырья хранятся в гербарии ИОЭБ СО РАН (№ FAs/to-15/09-12/0813i, FAs/to-15/10-12/0813i). Коммерческое сырье и препараты были приобретены через аптечную сеть, в том числе цветки календулы лекарственной

66 ______ © *Бутлеровские сообщения.* **2013**. Т.36. №12. _____ г. Казань. Республика Татарстан. Россия.

^{*}Ведущий направление; *Поддерживающий переписку

КОЛИЧЕСТВЕННЫЙ АНАЛИЗ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ В ЦВЕТКАХ КАЛЕНДУЛЫ... 66-74 [ООО "Лекс+" (010112), ОАО "Аптека ЦВМ" (250612)], "Настойка календулы" [ОАО "Флора Кавказа" (090812), ООО "Тульская фармацевтическая фабрика" (010312)], "Экстракт календулы жидкий" [ОАО "Арура" (100913)], "Экстракт календулы сухой" [ОАО "Арура" (150513)].

В работе использовали следующие реактивы: лития перхлорат (\geq 98.0%, *Sigma-Aldrich*), кислота перхлорная (\geq 70.0%, *Sigma-Aldrich*), додецилсульфат натрия (BioXtra, \geq 99.0%, *Sigma-Aldrich*), цетилпиридиний-*N*-хлорид (BioChemica, \geq 99.0%, *AppliChem*), цетилтриметиламмоний бромид (BioXtra, \geq 99.0%, *Sigma*), Тритон X-100 (BioXtra, *Sigma-Aldrich*). Остальные реактивы имели степень чистоты чда.

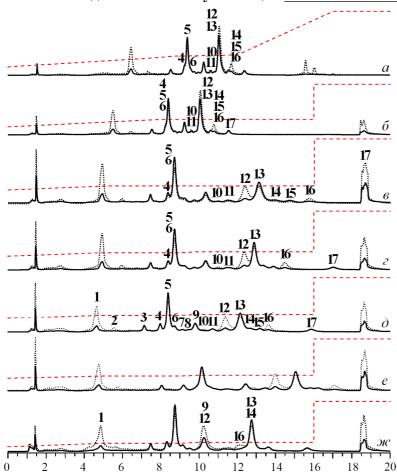
ВЭЖХ. Исследования проводили на микроколоночном жидкостном хроматографе *Милихром А-02* (*Эконова*), снабженным автосемплером, УФ-детектором и колонкой с обращено-фазовым сорбентом *ProntoSIL-120-5-C18 AQ* ($2 \times 75 \text{ мм}$, $\varnothing 5 \text{ мкм}$; *Metrohm AG*).

Количественный анализ. Для анализа растительного сырья 40 мг измельченных цветков переносили в пробирку Эппендорфа (2 мл), приливали 1 мл 50% EtOH и подвергали ультразвуковой обработке (50 кГц, 30 мин, 40 °C), после чего центрифугировали (6000 g, 20 мин). Полученное извлечение фильтровали через мембранный фильтр (0.45 мкм) и использовали для анализа (1 мкл).

Количественный анализ фенилпропаноидов проводили при 330 нм, флавоноидов – при 360 нм. Расчет содержания индивидуальных компонентов осуществляли по градуировочным графикам, построенным с применением коммерческих образцов стандартных соединений (кофейная кислота, 3-*O*-, 4-*O*-кофеилхинные кислоты, 1,3- и 4,5-ди-*O*-кофеилхинные кислота, рутин, изокверцитрин, нарциссин, изорамнетин-3-*O*-β-*D*-глюкопиранозид – все *SigmaAldrich*), выделенных ранее [2] образцов соединений с чистотой ≥95% (мангаслин, календофлавобиозид, тифанеозид, календофлавозид, календофлазид) и по внешним образца сравнения (изорамнетин-3-*O*-(6"-ацетил-)-β-*D*-глюкопиранозид – по изорамнетин-3-*O*-β-*D*-глюкопиранозиду). Образцы настоек использовали без разбавления после предварительного фильтрования (мембранный фильтр, 0.45 мкм); для анализа препарата "Экстракт календулы жидкий", его предварительно разбавляли 60% этанолом 1:1 и фильтровали. Препарат "Экстракт календулы сухой" растворяли в 60% этаноле (10 мг на 1 мл растворителя) при ультразвуковой обработке (50 кГц, 15 мин, 40 °C), после чего центрифугировали (6000 *g*, 20 мин) и фильтровали. Образцы настоев и отваров получали согласно рекомендациям Государственной Фармакопеи [10] в соотношении сырье : экстрагент 1:25.

Статистический анализ. Расчеты проводили с использованием одностороннего анализа отклонений (ANOVA) и средние значения определяли по методу Дункана с использованием пакета программ *Statistica*. Результаты анализа представлены в виде $X_{\text{ср.}} \pm SD$ (стандартное отклонение) от пяти последовательных изменений.

Результаты и их обсуждение


В ходе выбора условий для хроматографического анализа флавоноидов и фенилпропаноидов цветков *С. officinalis* методом микроколоночной ВЭЖХ-УФ в качестве базовой была выбрана методика, предложенная ранее для анализа флавоноидов растений рода *Filipendula* [11]. Установлено, что применение данной методики не позволяет добиться разделения следующих компонентов (критических смесей) (рис. 1а):

- **ж** календофлавобиозид (4; здесь и далее, обозначения согласно рис.), тифанеозид (5) и ругин (6);
- ▶ 3,5-ди-О-кофеилхинная кислота (10) и 6"-ацетил-изокверцитрин (11);
- ▶ ди-О-кофеилхинная кислота (12) и нарциссин (13);
- ▶ изорамнетин-3-О-глюкозид (14), изорамнетин-3-(2"-рамнозил)-рамнозид (15) и 4,5-ди-О-кофеилхинная кислота (16).

Увеличение концентрации элюента В в начале процесса приводит к повышению подвижности всех компонентов, но не позволяет разделить критические смеси (рис. 16). Для устранения данного недостатка было предложено заменить градиентный режим в части процесса на изократический, что позволило разделить основную часть компонентов, кроме 5 и 6 (рис. 1в,г), на отделение которых положительно повлияло повышение температуры колонки (рис. 1д). Снижение концентрации элюента В не привело к удовлетворительной динамике разделения (рис. 1е,ж). По результатам проведенных исследований был выбран режим элюирования, позволяющий добиться разделения 17 компонентов цветков *C. officinalis*.

Дополнительно было изучено влияния состава элюента на характер хроматографиического разделения. Так, было выявлено, что присутствие $HClO_4$ в составе элюента В влияет на подвижность кофеилхинных кислот: повышение концентрации $HClO_4$ приводит к увеличению величин t_R ди-кофеилхинных кислот и снижению — для моно-кофеилхинных кислоты (рис. 2a- Γ).

_____ Кащенко Н.И. и Оленников Д.Н. Режим элюирования (% В) 7-22% (0-7.6 мин), 22-25% (7.6-8.6 мин), 25-27% (8.6-12 мин), 27-100% (12-17 мин), 100% (17-24 мин); Т 35 °C

9-25% (0-8 мин), 25% (8-16 мин), 100% (16-24 мин); Т 35 °С

11-18% (0-5 мин), 18% (5-16 мин), 100% (16-24 мин); Т 35 °С

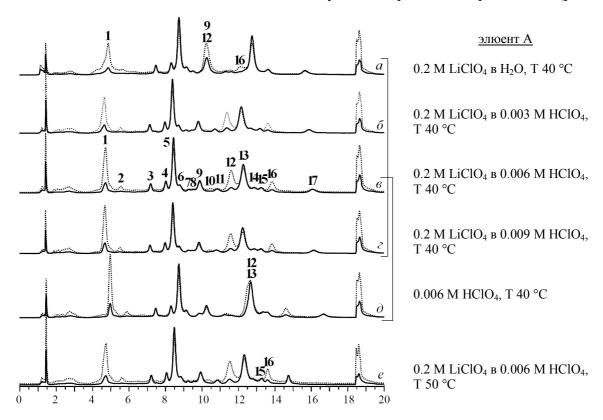
11-18% (0-5 мин), 18% (5-9 мин), 18-20% (9-10 мин), 20% (10-16 мин), 100% (16-24 мин); Т 35 °С

11-18% (0-5 мин), 18% (5-9 мин), 18-20% (9-10 мин), 20% (10-16 мин), 100% (16-24 мин); Т 40 °C

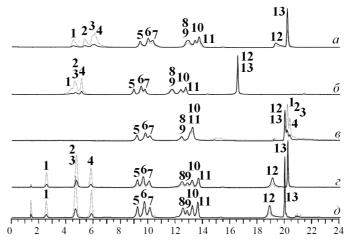
11-16% (0-5 мин), 16% (5-9 мин), 16-18% (9-10 мин), 18% (10-16 мин), 100% (16-24 мин); Т 40 °C

11-16% (0-5 мин), 16% (5-16 мин), 100% (16-24 мин); Т 40 °С

Рис. 1. Влияние режима элюирования на характер разделения основных компонентов цветков *C. officinalis*. Условия: элюент А [0.2 M LiClO₄ в 0.003 M HClO₄]; элюент В [MeCN]; v 150 мкл/мин; детектор 330 (пунктир) и 360 нм (линия). Числами обозначено положение соединений: 1 − 3CQA, 2 − CA, 3 − Q-3-(Rha^{2,6})Glc, 4 − Q-3-(Rha²)Glc, 5 − Ir-3-(Rha^{2,6})Glc, 6 − Q-3-(Rha⁶)Glc, 7 − Q-3-Glc, 8 − Q-3-(Rha²)Rha, 9 − Ir-3-(Rha²)Glc, 10 − 3,5-dCQA, 11 − Q-3-(Ac⁶)Glc, 12 − 1,5-dCQA, 13 − Ir-3-(Rha⁶)Glc, 14 − Ir-3-Glc, 15 − Ir-3-(Rha²)Rha, 16 − 4,5-dCQA, 17 − Ir-3-(Ac⁶)Glc.


Следует отметить, что возрастание содержания HClO₄ положительно влияет на форму пика — увеличивает высоту и симметричность, достигая наиболее удовлетворительных показателей при концентрации 0.006 М. Удаление из элюента LiClO₄ из состава элюента А приводит к слиянию компонентов 12 и 13 (рис. 2д), а дальнейшее повышение температуры колонки — к близким временам удерживания 15 и 16 (рис. 2е).

Замена пары $LiClO_4$ - $HClO_4$ в более гидрофильном элюенте A на неорганические (KCl-HCl, Na_2HPO_4 - H_3PO_4 , NaH_2PO_4 - H_3PO_4 , K_2HPO_4 - H_3PO_4 , KH_2PO_4 - H_3PO_4) или органические соединения (CH₃COONa-CH₃COOH, HCOONa-HCOOH, (COONa)₂-(COOH)₂, CH₃CH(OH)COONa-CH₃CH(OH)COOH), используемые для разделения флавоноидов и фенилпропаноидов других растительных объектов, не привело к положительным изменениям в характере разделения основных компонентов цветков C. officinalis.


С целью улучшения формы пиков нами была рассмотрена возможность применения мицеллярных модификаторов подвижной фазы, в качестве которых были использованы следующие ПАВ – додецилсульфат натрия (SDS), цетилпиридиний-*N*-хлорид (СРС), цетилтриметиламмоний бромид (САВ) и Тритон X-100 (ТХ). В качестве объекта исследования была выбрана смесь стандартных соединений, представленных структурно близкими фенилпропаноидами (монокофеилхинные кислоты) и флавоноидами (моногликозиды и биозиды кверцетина и изорамнетина), зачастую рассматриваемых в качестве критических смесей для хроматографического разделения (рис. 3).

Проведенные исследования показали, что использование SDS в качестве модификатора приводит к повышению подвижности всех соединений, причем кофеилхинные кислоты, а

КОЛИЧЕСТВЕННЫЙ АНАЛИЗ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ В ЦВЕТКАХ КАЛЕНДУЛЫ... 66-74 также некоторые пары флавоноидов [авикулярин (8) — нарциссин (9); кверцетин (12) — изорамнетин (13)] обладают близкими временами удерживания (рис. 3б). Применение СРС, САВ и ТХ типично и также не позволяет добиться удовлетворительного разделения (рис. 3в).

Рис. 2. Влияние состава элюента А на характер разделения основных компонентов цветков *С. officinalis*. Условия: элюент В [MeCN]; режим элюирования: 11-18% В (0-5 мин), 18% В (5-9 мин), 18-20% В (9-10 мин), 20% В (10-16 мин), 100% (16-24 мин); v 150 мкл/мин; детектор 330 (пунктир) и 360 нм (линия). Обозначение соединений: см. рис. 1.

Рис. 3. Влияние мицеллярных модификаторов на характер разделения стандартной смеси фенольных соединений. Условия: элюент А [H_2O (a), 0.01 M SDS (δ), 0.01 M CPC (ϵ), 0.2 M LiClO₄ в 0.006 M HClO₄ (ϵ), 0.2 M LiClO₄ в 0.006 M HClO₄ – 0.01 M SDS (1:1) (δ)] элюент В [MeCN]; режим элюирования: 11-18% В (0-5 мин), 18% В (5-9 мин), 18-20% В (9-10 мин), 20% В (10-16 мин), 100% (16-20 мин); v 150 мкл/мин; детектор 330 (пунктир) и 360 нм (линия). Числами обозначено положение соединений: 1 – 4CQA, 2 – 3CQA, 3 – 5CQA, 4 – CA, 5 – Q-3-(Rha 6)Glc, 6 – Q-3-Gal, 7 – Q-3-Glc, 8 – Q-3-Ara, 9 – Ir-3-(Rha 6)Glc, 10 – Q-3-Rha, 11 – Ir-3-Glc, 12 – Q, 13 – Ir.

Следует отметить, что данные модификаторы значительно увеличивают времена удерживания фенилпропаноидов (от 4-6 мин до 20-22 мин). Наилучшие результаты были получены при одновременном присутствии LiClO₄-HClO₄ и SDS (1:1) в составе элюента A (рис. 3д).

Несмотря на близкие значения подвижности 3- (2) и 5-O-кофеилхинных кислот (3) и следовое содержание 3 в цветках C. officinalis, общий характер деления был наиболее оптимальным. Повышение концентрации SDS в элюенте (до 0.005 M) не сказывалось на качестве разделения.

Предложенные условия хроматографического разделения были использованы для исследования сырья и некоторых препаратов и показали свою применимость для качественного и количественного анализа *C. officinalis* (рис. 4). В ходе предварительных исследований было установлено, что маркерными компонентами цветков *C. officinalis* являются 14 соединений: 5 фенилпропаноидов и 9 флавоноидов, содержание которых определялось в сырье (коммерческом и интродуцированном), настойках, экстрактах жидком и сухом, а также двух галеновых формах – настое и отваре (табл. 1-3).

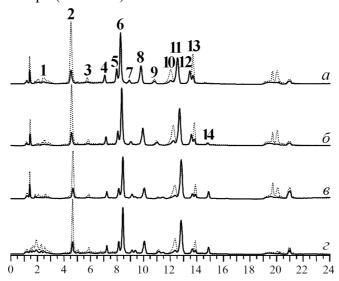


Рис. 4. Хроматограммы (МК-ВЭЖХ) коммерческих препаратов *C. officinalis. а* − настойка (*ООО "Тульская фармацевтическая фабрика"*, 010312), *б* − экстракт жидкий (*ОАО "Арура"*, 100913), *в* − экстракт сухой (*ОАО "Арура"*, 150513), *г* − отвар ('Русский размер', 15.VII.2013). Условия: элюент А [0.2 М LiClO₄ в 0.006 М HClO₄ − 0.01 М SDS (1:1)] элюент В [MeCN]; режим элюирования: 11-18% В (0-5 мин), 18% В (5-9 мин), 18-20% В (9-10 мин), 20% В (10-16 мин), 100% (16-20 мин); v 150 мкл/мин; детектор 330 (пунктир) и 360 нм (линия). Числами обозначено положение соединений: 1 − 4CQA, 2 − 3CQA, 3 − CA, 4 − Q-3-(Rha²Rha⁶)Glc, 5 − Q-3-(Rha²)Glc, 6 − Ir-3-(Rha²Rha⁶)Glc, 7 − Q-3-(Rha⁶)Glc, 8 − Q-3-Glc, 9 − Ir-3-(Rha²)Glc, 10 − 1,3-dCQA, 11 − Ir-3-(Rha⁶)Glc, 12 − Ir-3-Glc, 12 − 4,5-dCQA, 13 − Ir-3-(Ac⁶)Glc.

Суммарное содержание идентифицированных фенольных соединений в коммерческих и интродуцированных образах цветков C. officinalis составило 0.70-1.55 и 1.31-1.95%, соответственно, в том числе фенилпропаноидов / флавоноидов — 0.18/0.44-0.38/0.97 и 0.12/1.19-0.36/1.60%, соответственно (табл. 1).

Производные изорамнетина являются доминирующими компонентами комплекса фенольных соединений и составляют 62-78% от общего содержания данного класса соединений и 83-87% от сумы флавоноидов (0.44-1.33%). К числу основных флавоноидов относятся изорамнетин-3-*O*-(6"-рамнозил)глюкозид (нарциссин; 0.2-0.8%) и изорамнетин-3-*O*-(ди-2",6"-рамнозил)глюкозид (тифанеозид; 0.19-0.46%). На долю производных кверцетина приходится не более 13-17% от общего содержания флавоноидов (0.08-0.26%).

Фенилпропаноиды представлены как моно-, так и ди-кофеилхинными кислотами; доминирование отдельных компонентов зависит от партии или сорта сырья.

Выявленные особенности накопления определенных групп фенольных компонентов характерны для всех изученных препаратов *C. officinalis*: производные изорамнетина являются доминирующим классом соединений (табл. 2, 3). Данный факт указывает на сохранность компонентного профиля у готовых лекарственных форм в сравнении с исходным сырьем.

70 http://butlerov.com/ © <i>E</i>	Butlerov Communications. 2013. Vol.36. No.12. P.66-74.
---	--

 $^{^1}$ Для коммерческих образцов представлены данные анализа для двух парий сырья, с наименьшим и наибольшим содержанием; для интродуцированных образцов — для двух сортов с наибольшим содержанием.

		(F -			, ,				
		Коммерческое сырье				Интродуцированное сырье			
C				ОАО "Аптека		'Русский размер'		'Солнце Египта'	
Соединение	(010	(010112)		ЦВМ" (250612)		(15.VII.2013)		(25.VII.2013)	
	x	±SD	x	±SD	х	±SD	х	±SD	
	Фенилпропаноиды								
CA	0.100	0.003	0.187	0.005	0.105	0.003	0.035	0.001	
3CQA	0.625	0.018	1.299	0.036	0.955	0.027	0.334	0.009	
4CQA	0.452	0.012	0.392	0.011	0.243	0.007	0.131	0.004	
1,3-dCQA	0.397	0.013	1.463	0.041	1.977	0.055	0.647	0.018	
4,5-dCQA	0.218	0.005	0.496	0.014	0.283	0.008	0.095	0.003	
Σ	1.792		3.837		3.563		1.242		
			Производн	ые кверцег	пина				
Q-3-Glc	0.357	0.010	0.937	0.027	0.776	0.022	0.718	0.020	
Q-3-Rha ² Glc	0.216	0.006	0.245	0.005	0.571	0.015	0.337	0.009	
Q-3-Rha ⁶ Glc	0.090	0.002	0.289	0.007	0.795	0.019	0.145	0.003	
Q-3-Rha ^{2,6} Glc	0.145	0.004	0.425	0.011	0.497	0.012	0.340	0.009	
Σ	0.808		1.896		2.639		1.540		
		I	<i>Троизводнь</i>	іе изорамн	етина				
Ir-3-Glc	0.158	0.003	0.343	0.008	0.116	0.004	0.112	0.003	
Ir-3-Ac ⁶ Glc	0.146	0.004	0.390	0.010	0.436	0.011	0.556	0.014	
Ir-3-Rha ² Glc	0.143	0.003	0.357	0.008	0.356	0.009	0.292	0.007	
Ir-3-Rha ⁶ Glc	2.005	0.048	4.688	0.117	7.982	0.207	4.829	0.115	
Ir-3-Rha ^{2,6} Glc	1.942	0.050	3.937	0.102	4.442	0.124	4.588	0.124	
Σ	4.394		9.715		13.332		10.377		
Σ флавоноидов	5.202		11.611		15.971		11.917		

Табл. 1. Содержание фенольных соединений в цветках *C. officinalis*, мг/г (производитель / сорт, серия / дата сбора)

Табл. 2. Содержание фенольных соединений в готовых лекарственных формах *C. officinalis* (производитель, серия)

15.448

6.994

Σ соединений

19.534

13.159

	Had	стойка	Настойка (ООО "Тульская	Экстракт	жидкий	Экстракт	сухой	
Соединение	(ОАО "Фл	ора Кавказа",	фармацевтическая		(OAO "Apypa",		(OAO "Apypa",		
Соединение	090812	2), мкг/мл	фабрика",	фабрика", 010312), мкг/мл		100913), мкг/мл		150513), мг/г	
	х	±SD	х	$\pm SD$	х	±SD	x	±SD	
			Фенилпро	паноиды					
CA	7.15	0.21	19.79	0.59	88.43	2.65	0.79	0.02	
3CQA	36.90	1.14	104.89	3.25	484.56	12.60	6.07	0.17	
4CQA	10.08	0.28	22.10	0.64	86.91	2.05	1.32	0.03	
1,3-dCQA	26.67	0.72	49.84	1.25	317.22	8.24	3.61	0.10	
4,5-dCQA	25.35	0.76	67.49	1.95	231.56	6.48	2.12	0.06	
Σ	106.15		264.11		1208.68		13.91		
			Производные	кверцетина					
Q-3-Glc	36.70	0.88	62.99	1.63	230.14	5.98	2.96	0.09	
Q-3-Rha ² Glc	18.53	0.50	42.71	1.11	214.04	4.50	2.29	0.07	
Q-3-Rha ⁶ Glc	7.66	0.20	12.50	0.35	69.02	1.79	1.26	0.04	
Q-3-Rha ^{2,6} Glc	9.06	0.26	25.55	0.74	135.72	3.34	1.62	0.05	
Σ	71.95		143.75		648.92		8.13		
		I	<i>Троизводные і</i>	<i>изорамнетина</i>					
Ir-3-Glc	28.51	0.66	35.11	0.84	148.08	4.44	0.84	0.02	
Ir-3-Ac ⁶ Glc	сл.	-	1.33	0.04	24.32	0.63	1.26	0.03	
Ir-3-Rha ² Glc	11.87	0.28	16.67	0.41	101.09	2.42	0.42	0.01	
Ir-3-Rha ⁶ Glc	145.85	4.08	163.33	4.40	1085.95	26.07	17.54	0.49	
Ir-3-Rha ^{2,6} Glc	158.94	3.81	225.87	5.87	1238.80	37.16	13.80	0.37	
Σ	345.17		442.31		2598.24		33.86		
Σ флавоноидов	417.12		586.06		3247.16		41.99		
Σ соединений	523.27		850.17		4455.84		55.90		

К числу наиболее обогащенных лекарственных форм относятся сухой и жидкий экстракты, содержащие 5.59 и 0.45% фенольных соединений, соответственно, в т.ч. флавоноидов / фенилпропаноидов – 3.39/1.39 и 0.32/0.12%, соответственно.

Настойки, настои и отвары, представляют собой лекарственные формы, полученные по малоэкстенсивной технологии, что отражается на качестве готового продукта. Так, суммарное содержание флавоноидов в изученных партиях настоек не превышало 0.06%, что почти в 5.5 раз меньше такового в жидком экстракте и более чем в 70 раз меньше, чем в сухом экстракте.

C		Коммерческое сырье (ОАО "Аптека ЦВМ", 250612)				Интродуцированное сырье ('Русский размер', 15.VII.2013)			
Соединение	наст	ой	отва	ıp	настой		отвар		
	x	±SD	х	±SD	х	±SD	x	±SD	
Фенилпропаноиды									
CA	17.12	0.59	12.72	0.33	8.71	0.25	17.54	0.45	
3CQA	63.01	1.51	79.40	2.30	70.62	1.48	75.54	1.96	
4CQA	77.21	2.00	111.97	3.47	96.45	2.79	98.76	2.07	
1,3-dCQA	47.20	1.36	61.82	1.61	51.16	1.27	51.43	1.18	
4,5-dCQA	7.19	0.17	38.12	0.91	17.24	0.45	31.23	0.81	
Σ	211.73		304.03		244.18		274.50		
Производные кверцетина									
Q-3-Glc	25.08	0.72	29.20	0.70	40.29	1.16	44.34	0.97	
Q-3-Rha ² Glc	17.29	0.50	20.75	0.63	30.80	0.67	34.22	0.71	
Q-3-Rha ⁶ Glc	5.33	0.15	7.17	0.21	11.32	0.25	13.63	0.31	
Q-3-Rha ^{2,6} Glc	15.89	0.31	15.72	0.39	17.95	0.56	22.92	0.52	
Σ	63.59		72.84		100.36		115.11		
Производные изорамнетина									
Ir-3-Glc	5.26	0.14	10.52	0.23	14.36	0.32	13.78	0.34	
Ir-3-Ac ⁶ Glc	34.75	1.01	36.64	0.95	15.70	0.41	17.07	0.43	
Ir-3-Rha ² Glc	8.11	0.21	8.68	0.19	8.89	0.18	10.76	0.27	
Ir-3-Rha ⁶ Glc	142.12	3.12	145.39	3.78	193.71	4.64	211.48	6.13	
Ir-3-Rha ^{2,6} Glc	192.44	5.01	225.56	6.31	186.03	3.72	211.91	6.35	
Σ	382.68		426.79		418.69		465.00		
Σ флавоноидов	446.27		499.63		519.05		580.11		
Σ соединений	658.00		803.66		763.23		854.61		

Табл. 3. Содержание фенольных соединений в галеновых жидких лекарственных формах C. officinalis, мкг/мл

Следует отметить, что ранние сведения о количественном содержании флавоноидов в препарате "Настойка календулы" около 0.2-0.3% [12, 13], слишком завышены. Одной из вероятных причин этого явления является то, что метод, используемый для анализа (дифференциальная спектрофотометрия) не позволяет проводить селективное определение группы флавоноидов.

Сравнительный анализ количественных показателей настоек и водных галеновых форм (настои и отвары) из цветков C. officinalis, показал, что последние не уступают, а в ряде случаев превосходят по качеству спиртовые формы (табл. 3). Например, содержание флавоноидов / фенилпропаноидов в галеновых формах составило 0.05-0.06/0.02-0.03%, соответственно, что близко к таковым показателям настоек (0.04-0.06/0.01-0.03%, соответственно). Полученные результаты свидетельствуют о возможности проведения адекватной замены настоек отварами или настоями, при неосуществимости применения последних (детский возраст, аллергия на этанол и др.).

Учитывая сведения о допустимых нормах приема различных лекарственных форм из цветков C. officinalis, нами были рассчитаны показатели суточного потребления двух групп действующих соединений – фенилпропаноидов и флавоноидов (табл. 4).

Табл. 4. Суточное потребление фенилпропаноидов и флавоноидов при приеме лекарственных форм из цветков C. Officinalis

Лекарственная форма	Норма потребления	Суточное потребление при приеме, мг/г			
	порма потреоления	фенилпропаноиды	флавоноиды		
Настойка	2-3 мл/сут.	0.5-0.8	1.2-1.7		
Экстракт жидкий	1-2 мл/сут.	1.2-2.4	3.3-6.5		
Экстракт сухой	0.1-0.3 г/сут.	1.4-2.1	4.2-6.3		
Настой	100-150 мл/сут.	24-36	52-78		
Отвар	100-150 мл/сут.	30-46	58-87		

Представленные результаты свидетельствуют о том, что, несмотря на некоторую архаичность таких лекарственных форм, как настой и отвар, их применение позволяет добиться максимального приема биологически активных соединений (в 70-90 раз больше, чем при приеме настоек). Согласно сведениям о рекомендуемых уровнях потребления пищевых и

КОЛИЧЕСТВЕННЫЙ АНАЛИЗ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ В ЦВЕТКАХ КАЛЕНДУЛЫ... 66-74 биологически активных веществ, показатель адекватного суточного уровня потребления для флавонол-гликозидов составляет около 30 мг/сут., а верхний допустимый предел — 100 мг/сут.; для фенилпропаноидов эти показатели составляют 10 и 20 мг/сут., соответственно [14]. Таким образом, прием 100 мл отвара (настоя) цветков *C. officinalis* позволяет удовлетворить суточную потребность организма в данных соединениях.

Заключение

Мицеллярные модификаторы подвижной фазы в методе микроколоночной высокоэффективной жидкостной хроматографии (МК-ВЭЖХ) положительно влияют на характер разделения фенилпропаноидов и флавонол-гликозидов в условиях МК-ВЭЖХ. Впервые проведено сравнительное изучение химического состава и определено количественное содержание 14 фенольных соединений (5 фенилпропаноидов и 9 флавоноидов) в цветках календулы лекарст-венной (*Calendula officinalis* L.) и некоторых лекарственных препаратах из данного вида растительного сырья.

Выводы

- 1. Микроколоночная ВЭЖХ может быть успешно использована для анализа растительных объектов, содержащих структурно близкие соединения групп фенилпропаноидов и флавоноидов.
- 2. Разработанная методика ВЭЖХ-анализа позволяет определять содержание 14 маркерных компонентов цветков календулы лекарственной (*Calendula officinalis* L.) и применима для исследования исходного растительного сырья и некоторых препаратов (настойки, экстракты, настои, отвары).

Используемые сокращения

МК-ВЭЖХ – микроколоночная высокоэффективная жидкостная хроматография; фенилиропаноиды: 3CQA – 3-О-кофеилхинная кислота, 4CQA – 4-О-кофеилхинная кислота, 5CQA - 5-O-кофеилхинная кислота, 1,5-dCQA - 1,5-ди-O-кофеилхинная кислота, 3,5-dCQA -3,5-ди-О-кофеилхинная кислота, 4,5-dCQA – 4,5-ди-О-кофеилхинная кислота, CA – кофейная кислота; производные кверцетина: Q - кверцетин, Q-3-Gal - кверцетин-3-О-галактозид (гиперозид), Q-3-Glc – кверцетин-3-О-глюкозид (изокверцитрин), Q-3-Rha – кверцетин-3-Орамнозид (кверцитрин), Q-3-Ara – кверцетин-3-*O*-арабинозид (авикулярин), Q-3-(Ac⁶)Glc – кверцетин-3-O-(6"-ацетил)глюкозид, Q-3-(Rha²)Glc – кверцетин-3-O-(2"-рамнозил)глюкозид (календофлавобиозид), Q-3-(Rha 6)Glc – кверцетин-3-O-(6"-рамнозил)глюкозид (рутин), Q-3- (Rha^2) Rha — кверцетин-3-O-(2''-рамнозил)рамнозид, Q-3- $(Rha^{2,6})$ Glc — кверцетин-3-O-(ди-2'',6''-1)рамнозил)глюкозид (мангаслин); *производные изорамнетина*: Ir – изорамнетин, Ir-3-Glc – изорамнетин-3-O-глюкозид, Ir-3-(Ac⁶)Glc – изорамнетин-3-O-(6"-ацетил)глюкозид, Ir-3- $(Rha^2)Glc$ – изорамнетин-3-O-(2''-рамнозил)глюкозид (календофлавозид), Ir-3- $(Rha^6)Glc$ – изорамнетин-3-O-(6"-рамнозил)глюкозид (нарциссин), Ir-3-(Rha²)Rha – изорамнетин-3-O-(2"рамнозил)рамнозид (календофлазид), Ir-3-(Rha 2,6)Glc — изорамнетин-3-O-(ди-2",6"-рамнозил)глюкозид (тифанеозид).

Благодарности

Работа выполнена при финансовой поддержке проекта РФФИ 12-03-31547(мол а).

Литература

- [1] K.A. Khalid, J.A. Teixeira da Silva. Biology of *Calendula officinalis* Linn.: Focus on pharmacology, biological activities and agronomic practices. *Med. Arom. Plant Sci. Biotechnol.* **2012**. Vol.6. P.12-27.
- [2] D.N. Olennikov, N.I. Kashchenko. New isorhamnetin glucosides and other phenolic compounds from *Calendula officinalis. Chem. Nat. Comp.* **2013**. Vol.49. P.717-723.
- [3] A.I. Derkach, N.F. Komissarenko, V.T. Chernobai. Coumarins of the inflorescences of *Calendula officinalis* and *Helichrysum arenarium*. *Chem. Nat. Comp.* **1986**. Vol.22. P.722-723.
- [4] A. Szakiel, D. Ruszkowski, W. Janiszowska. Saponins in *Calendula officinalis* L. structure, biosynthesis, transport and biological activity. *Phytochem. Rev.* **2005**. Vol.4. P.151-158.

- Кащенко Н.И. и Оленников Д.Н.
- Полная исследовательская публикация _____ Кащенко Н.И. и Оленников Д [5] J. Varljen, A. Lipták, H. Wagner. Structural analysis of a rhamnoarabinogalactan and arabinogalactans with immuno-stimulating activity from Calendula officinalis. Phytochemistry. 1989. Vol.28. P.2379-2383.
- [6] V. Kaškoniene, P. Kaškonas, M. Jalinskaitė, A. Maruška. Chemical composition and chemometric analysis of variation in essential oil of *Calendula officinalis* L. during vegetation stages. Chromatographia. 2011. Vol.73. P.S163-S169.
- [7] P. Pietta, R.M. Facino, M. Carini, H. Mauri, Thermospray liquide chromatography-mass spectrometry of flavonol glycosides from medicinal plants. J. Chrom. A. 1994. Vol.661. P.121-126.
- [8] I.Z. Matic, Z. Juranic, K. Savikin, G. Zdunic, N. Nadvinski, D. Godevac. Chamomile and marigold tea: Chemical characterization and evaluation of anticancer activity. *Phytother. Res.* **2013**. Vol.26. P.852-858.
- [9] Полуденный Л.В., Сотник В.Ф., Хлапцев Е.Е. Эфирномасличные и лекарственные растения. М.: Колос. 1979. 286с.
- [10] Государственная Фармакопея СССР: 11 изд. М.: Медииина. 1990. 398с.
- [11] D.N. Olennikov, M.Yu. Kruglova. New quercetin glucoside and other phenolic compounds from Filipendula genus. Chem. Nat. Comp. 2013. Vol.49. P.524-529.
- [12] Костенникова З.П., Панова Г.А., Драмбраускене З. Количественное определение флавоноидов в настойке календулы методом УФ-спектрофотометрии. Фармация. 1984. №6. С.33-35.
- Слуева Е.К., Жукович Е.Н., Шарикова Л.А., Прибыткова Т.Ф., Деревщикова Е.Б. Оценка содержания суммы флавоноидов в настойке календулы. Фармация. 2003. №1. С.13-15.
- [14] Рациональное питание. Рекомендуемые уровни потребления пищевых и биологически активных соединений. Методика. МР № 2.3.1.1915-04 от 2 июля 2004 г.