Electronic and geometric structure of a number of fullerene isomers C₉₀ and structure of their chlorine and perfluoroalkyl polyadducts

© Regina A. Tuktamysheva,¹ Ayrat R. Khamatgalimov,² and Valery I. Kovalenko^{1,2}*

 ¹Department of Engineering Ecology. Kazan National Research Technological University. K. Marx St., 68. Kazan, 420015. Tatarstan Republic. Russia. Phone: +7 (843) 238-56-94. E-mail: koval@iopc.ru
²Physico-Chemical Research Division. A.E. Arbuzov Institute of Organic and Physical Chemistry. Akad. Arbuzov St., 8. Kazan, 420088. Tatarstan Republic. Russia. Phone: +7 (843) 273-93-65. E-mail: koval@iopc.ru

*Supervising author; ⁺Corresponding author

Keywords: fullerene C_{90} , *IPR* isomers, electronic structure, pyramidality, radical addition, chlorine and perfluoroalkyl derivatives, method of density functional theory.

Abstract

For the first time we have shown the distribution of electron density and presented it as a traditional valence scheme, i.e. as simple, double and delocalized PI-bonds in molecules of IPR isomers of fullerene C₉₀: $46(C_{2v})$, $35(C_s)$, $30(C_1)$, $28(C_2)$, $32(C_1)$, $34(C_s)$, which are the predecessors of polyadducts $46(C_s)Cl_{32}$, $35(C_s)Cl_{24}$, $35(C_s)Cl_{28}$, $30(C_1)Cl_{22}$, $28(C_2)Cl_{26}$, $32(C_1)Cl_{24}$, $34(C_s)Cl_{32}$ and $32(C_1)(CF_3)_{12}$, $35(C_1)(CF_3)_{14}$, $30(C_1)(CF_3)_{18}$. The hexagons with delocalized π -bonds have been shown to be the most likely positions for addition of Cl and CF₃ radicals that reflects the important role the fullerene molecular electronic structure plays in the radical addition reaction.