Full Paper

Registration Code of Publication: 14-38-4-119

The article is published on the materials of the report to the Scientific and Practical Conference "New Chemical-Pharmaceutical Technologies" held in May 28, 2014 at D.I. Mendeleev RCTU. Publication is available for discussion in the framework of the on-line Internet conference "Butlerov readings". http://butlerov.com/readings/ Contributed: June 26, 2014.

Oil-in-water nanoemulsions stabilized by vixtures of nonionic surfactant

© Marina Yu. Koroleva,*⁺ Tatiana Yu. Nagovitsina, Dmitry A. Bidanov, and Evgeny V. Yurtov

Department of Nanomaterials and Nanotechnology. Mendeleev University of Chemical Technology. Miusskaya sq. 9. Moscow, 125047. Russia. Phone: +7 (495) 495-21-16. E-mail: m.yu.kor@gmail.com, nagovitsina.t@yandex.ru

*Supervising author; ⁺Corresponding author

Keywords: nanoemulsions, phase inversion temperature method, Span 60, Span 80, Tween 60, Tween 80, Cremophor EL, Solutol HS15.

Abstract

The phase inversion temperature method was used for nanoemulsion preparation. Nanoemulsions were stabilized by the mixtures of nonionic surfactants: Tween 60, Tween 80, Span 60, Span 80, Cremophor EL, and Solutol HS15. At volume ratios of Tween/Span 2.0-2.4 nanoemulsions with droplet sizes of the dispersed phase equal to 15-30 nm were formed. In the case of stabilization by mixtures of Solutol HS15/Span 60 or Cremophor EL/Span 60 the formulation of nanoemulsions with 20-35 nm droplets occurred in a wider range of volume ratios of surfactants -0.5-2.5.

Nanoemulsions with surfactants solid at the storage temperature were the most stable. Droplet sizes remained almost unchanged for 20-25 days. This can be explained by the formulation of the solid adsorption layer on droplet surface which prevented coalescence and retarded Ostwald ripening in such colloidal systems.