Thematic Section: Physicochemical Research. Subsection: Biochemistry and Biotechnology.

Full Paper Registration Code of Publication: 14-38-5-103 Publication is available for discussion in the framework of the on-line Internet conference "Butlerov readings". http://butlerov.com/readings/ Contributed: July 18, 2014.

Kinetic analysis of glycathione inhibition of the process of nonenzymatic glycosylation in vitro of genetically engineered human insulin

© Nazar K. Bulatov,¹ Ekaterina A. Savateeva,¹⁺ Victor V. Emelyanov,¹ Nadezhda E. Maximova,¹ Natalia N. Mochulskaya,¹ and Valery A. Chereshnev^{2*}

¹ Institute of Chemical Technology. Ural Federal University named after

First President of Russia B.N. Yeltsin. Mira St., 19. Ekaterinburg, 620002. Russia.

Phone: +7 (343) 375-47-94. E-mail: esavateeva@gmail.com

² Institute of Immunology and Physiology. Ural Branch of the Russian Academy of Sciences. Pervomayskaya St., 106. Ekaterinburg, 620049. Russia. Phone: +7 (343) 374-00-70.

*Supervising author; ⁺Corresponding author

Keywords: kinetics, non-enzymatic glycosylation of proteins, insulin, glutathione.

Abstract

The kinetic characteristics of inhibition by reduced glutathione of the process of nonenzymatic glycosylation of insulin *in vitro* at its initial stage, wherein it consists of two consecutive steps s = 1, 2 and proceeds in quasi-equilibrium regime by the stage1 have been discussed. It has been established that glutathione supplements do not disturb the mechanism of this two-stage process, but reduce its rate and the yield of the final product - fructosamine - at stage 2 by binding glutathione (Y) of insulin (I) as a reagent of stage 1 in the chemical compound of type $I_{\alpha}Y$ the routing reaction p = 3: $\alpha I + Y = I_{\alpha}Y$, where α – module of stoichiometric factor of insulin. Thermodynamic calculations of equilibrium concentrations of all components in working solutions by their initial concentrations using the previously found equilibrium constants in steps 1 and 2 show that the routing reaction 3 is implemented at $\alpha = 4$ has the equilibrium constant $K_3^c(T, [c_k]) = 733$

 $(T = 277K, [c_k] = 1 \text{ mol/m}^3).$