Short Communication

Registration Code of Publication: 14-38-6-169 Publication is available for discussion in the framework of the on-line Internet conference "Butlerov readings". http://butlerov.com/readings/ Contributed: June 11, 2014.

Formation of the acrylonitrile self-associates

© Valentina V. Zaitseva,* Tatiana G. Turina, and Sergey Yu. Zaitsev⁺

Chemistry Department. Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology. Akad. Skryabina St., 23. Moscow, 109472. Russia. Phone: +7 (495) 377-95-39, 237-42-81. *E-mail: valzaitseva@mail.ru, s.y.zaitsev@mail.ru*

*Supervising author; ⁺Corresponding author *Keywords:* acrylonitrile, vinyl monomers, self-associates, AM1, NMR spectroscopy (¹H, ¹³C).

Abstract

The structures of the acrylonitrile self-associates (the dimer A3 structure is optimal) were calculated by quantum-chemical methods and proved by NMR ¹H and ¹³C spectroscopy. The self-association constants from ~ 0.070 till 0.103 l/mol were determined by chemical shifts of the *trans*- and *cis*-hydrogen in the =CH₂ and carbon in the =CH of the acrylonitrile isomers. It is recommended to use the chemical shift of the carbon in the =CH for the self-association constants calculations. The obtained data are important not only for the further acrylonitrile polymerization, but also for its copolymerization with other vinyl monomers.