Thematic Section: Preparative Research. **Full Paper** Subsection: Inorganic Chemistry. Registration Code of Publication: 14-38-6-95 Publication is available for discussion in the framework of the on-line Internet conference "Butlerov readings". http://butlerov.com/readings/ Contributed: August 11, 2014.

Thematic course: Hydrochemical synthesis of films of chalcogenide metals. Part 21.

Obtaining substitutional solid solutions in the lead–tin–sulfur system by means of ion-exchange synthesis

© Ragneta Kh. Saryeva,¹ Zinaida I. Smirnova,¹ Larisa N. Maskaeva,^{1,2+} Vyacheslav F. Markov,^{1,2}* and Mikhail. Yu. Porkhachev²

¹ Department of Physical and Colloidal Chemistry. Institute of Chemistry and Technology. Ural Federal University Named after the First President of Russia B.N. Yeltsin. Mira St., 19, Yekaterinburg, 620002. *Russia. Phone:* +7 (343) 375-93-18. *E-mail: mln@ural.ru*

²Ural Institute of State Fire Service of EMERCOM of Russia. Mira St., 22, Yekaterinburg, 620062. Russia. Phone: +7 (343) 360-81-68.

*Supervising author; ⁺Corresponding author

Keywords: thin films, lead sulfide, tin sulfide, chemical bath deposition, ion-exchange synthesis, $Pb_{1-x}Sn_xS$ substitutional solid solutions, solubility product.

Abstract

The analysis of effective solubility products of lead and tin(II) sulfides at the «PbS_{solid} film- acetate $SnCl_2$ aqueous solution» interface, along with analysis of a change in the Gibbs free energy of PbS \rightarrow SnS ion-exchange transformation has been performed and confirmed the possibility of formation of Pb_{1-x}Sn_xS substitutional solid solutions in the considered system. The results of scanning electron microscopy and energy-dispersive analyses have revealed changes in the elemental composition and surface morphology of tin-modified PbS layers in relation to duration of contact between a film and an acetate tin(II) chloride aqueous solution. For the first time, tin-containing films based on lead sulfide with the tin content up to 33.3 at % including a phase of $Pb_{1-x}Sn_xS$ solid solutions have been obtained by ion-exchange substitution via incubation of thin polycrystalline PbS films in tin(II) chloride aqueous solutions at 368 K.