Full Paper

Registration Code of Publication: 14-39-10-148 Subsection: Physical Organic Chemistry. Publication is available for discussion in the framework of the on-line Internet conference "Butlerov readings". http://butlerov.com/readings/ (English Preprint) Contributed: December 25, 2014.

Research of the associated stable tetrahedral LiF-Li₂CrO₄-KBr-K₂CrO₄ of quaternary reciprocal system Li,K||F,Br,CrO₄

© Maria A. Dyomina,⁺ Alyona A. Chudova,* Anastasia V. Nenasheva, and Ivan K. Garkushin

Department of General and Inorganic Chemistry. Samara State Technical University. Molodogvardeiskaya St., 244. Samara, 443100. Samara region. Russia. *Phone:* +7 (846) 242-36-92. *E-mail:* masha.demina2010@vandex.ru

*Supervising author; ⁺Corresponding author

Keywords: differential thermal analysis, T-x diagram, eutectic, phase equilibria.

Abstract

Phase equilibria in the associated tetrahedral LiF-Li₂CrO₄-KBr-K₂CrO₄ of quaternary reciprocal system $Li,K||F,Br,CrO_4$ have been studied by the differential thermal analysis. The compositions of two quaternary eutectic (equiv. %) have been determined: 3% LiF, 42.7% Li₂CrO₄, 9.7% KBr, 44.6% K₂CrO₄ with melting point 455 °C and 1% LiF, 77.1% Li₂CrO₄, 7% KBr, 14.9% K₂CrO₄ with melting point 350 °C.