Thematic Sec	tion: I	Biochem	nical	Resear	ch.				Full Pap	er
							 	 	_	

Subsection: Composition of Plant Raw Materials.

Reference Object Identifier – ROI: jbc-02/15-41-3-109

The article is published as a material of correspondence participation in International Scientific Forum "Butlerov Heritage-2015". http://foundation.butlerov.com/bh-2015/ (English Preprint) Submitted on March 31, 2015.

Special aspects of the biosynthesis of oxylipins in the spikemoss *Selaginellaceae* family

© Anna V. Ogorodnikova,* Faimya K. Mukhitova,* and Alexander N. Grechkin*

Kazan Institute of Biochemistry and Biophysics of Kazan Scientific Centre, RAS. Lobachevsky St., 2/31. Kazan, 420111. Republic of Tatarstan. Russia. Phone: +7 (843) 231-90-40. E-mail: anyuta_ogorodnik@mail.ru

*Supervising author; *Corresponding author

Keywords: Selaginella martensii Spring, lipoxygenase pathway, oxylipins, divinyl ethers, 12-oxophytodienoic acid.

Abstract

Green tissues of spikemoss *Selaginella martensii* Spring possessed the complex oxylipins patterns. Major oxylipins were the products of linoleic and α -linolenic acids metabolism via the sequential action of 13-lipoxygenase and divinyl ether synthase (DES) or allene oxide synthase (AOS). AOS products were represented by 12-oxophytodienoic acid (12-oxo-PDA) isomers. Exceptionally, its predominant isomer was 12-oxo-9(13),15-PDA, which is very uncommon in flowering plants. Divinyl ethers are detected first time in non-flowering land plant. These are the first observations of fatty acid metabolism through the lipoxygenase pathway in spikemosses (Lycopodiophyta).