Reference Object Identifier - ROI: jbc-02/15-43-8-111

The article is published on materials of the report on "International Scientific Forum Butlerov Heritage – 2015". http://foundation.butlerov.com/bh-2015/ (English Preprint) Submitted on April 26, 2015.

Method for carbonization of massive refractory metal rods

© Alexander V. Varaksin,¹ Viacheslav L. Lisin,²* Victor A. Kostilev,¹* Leopold I. Leontiev,²* Robert G. Zakharov,² Sophia A. Petrova,²⁺ Elena V. Ignatieva,² and Alexey B. Shubin²

¹ 'Technologii tantala' Co Ltd. Lenin St., 131. Upper Pyshma, 624096. Sverdlovsk Region. Russia. Phone: +7 (922) 211-88-44. E-mail: npp-nauka@yandex.ru ²Laboratory for Physical-Chemistry of Metal Melts. Institute of Metallurgy, Urals' Division of RAS

Amundsen St., 101. Ekaterinburg, 620016. Russia. Phone: +7 (343) 267-88-94. E-mail: danaus@mail.ru

*Supervising author; ⁺Corresponding author

Kevwords: tungsten, titanium, carbonization, chemical transport reaction, electrochemical reduction, salt melt.

Abstract

Carbonization of the volumetric tungsten and titanium rods by chemical transport reactions in salt melts was performed. By X-ray diffraction, X-ray spectrum analysis, and microhardness test it is shown that on the surface of the rods carbide coating of 20-50 mkm thickness was generated. Anodic dissolution was detected as a limiting factor for the carbonization. To prevent the anodic dissolution and to accelerate the carbonization process it is proposed to energize the sample by an alternative current.