Full Paper	Thematic Section: Physicochemical Research.
Reference Object Identifier – ROI: jbc-02/15-43-8-134	Subsection: Physico-Chemistry of Energy-Intensive Processes.
The article is published on materials of the report on "International Scientific Forum	
Butlerov Heritage – 2015". http://foundation.butlerov.com	/bh-2015/ (English Preprint)
Submitted on April 29, 2015	· · · · · · · · · · · · · · · · · · ·

Rheological feature filled cellulose nitrate lacquer compositions

© Natalia S. Gainutdinova, Tatiana A. Eneykina, Sergey V. Soldatov, Anatoly Petrovich Paylov, Rose F. Gatina, and Yury M. Mikhailov

Federal State Enterprise "State Scientific-Research Institute of Chemical Products". Svetlaya, 1. Kazan, 420033. Republic of Tatarstan. Russia. Tel: +7 (843) 544-07-21, 544-09-82. E-mail: 173gniihp@gmail.com

*Supervising author; *Corresponding author

Keywords: cellulose nitrate lacquer, filler, concentration dependence, the effective viscosity, rheology.

Abstract

The concentration dependence of viscosity is filled with 25% to nitrocell-Loozen lacquer (NC lacquer), which has an extreme character with at least \sim 50% of the mass. in relation to NTS were presented. The position of the minimum of the corresponding concentration \sim 50% of the mass does not depend on the concentration of the radio source NC-lacquer. It is shown that the asymptotic dependence of the viscosity is filled with 25% NC-lacquer on the specific surface area of particles of HMX at a constant mass concentration of the filler. The most intensive growth of viscosity, about \sim 1.6 times, occurs when the values of the specific surface in the range 8000-12500 cm²/g.