Sonochemical synthesis of nanocomposites MnO₂/C

© Nadezhda V. Pechishcheva,¹ Svetlana Khusainovna Estemirova,^{2*+}

Galina A. Kozhina,^{2,3} Konstantin Yu. Shunyaey,¹ and Maria Yu. Skrylnik¹ ¹Laboratory of Analytical Chemistry; ²Laboratory of Statics and Kinetics of Processes. Federal State Institution of Science Institute of Metallurgy UB RAS. Amundsen St., 101. Ekaterinburg, 620016. Russia. ³ Ural State University of Economics. 8th March St., 62. Ekaterinburg, 620144. Sverdlovsk region. Russia. *Phone:* +7 (8434) 232-90-40. *E-mail:* k shun@mail.ru, esveta100@mail.ru

*Supervising author; ⁺Corresponding author

Keywords: sonochemical synthesis, carbon materials, mechanical activation, nanocomposites.

Abstract

Nanocomposites MnO₂/C were obtained by two methods, both of which included an ultrasonic impact and did not involve chemically active substances. The first method was conducted in a single stage; activated charcoal BAU-A served as a matrix material. Sonochemical synthesis of nanocomposites based on spectrally pure graphite (the second method) required its modifications realized by mechanical activation. According to X-ray data all synthesized composites were nanocrystalline and contained two phases - manganese oxide(IV) and carbon. The average crystallite size of MnO₂ adsorbed on the porous structure of the carbon materials was about 5 nm.