Full Paper

Reference Object Identifier - ROI: jbc-02/16-48-11-40 Subsection: Inorganic Chemistry. Publication is available for discussion in the framework of the on-line Internet conference "Butlerov readings". http://butlerov.com/readings/ Submitted on December 20, 2016.

Using of simplex lattices method for diagramming compositionviscosity of the slag system CaO-SiO₂-Al₂O₃-MgO-B₂O₃

© Anatoly A. Babenco,* Leonid A. Smirnov, Vladimir I. Zhuchkov, Alexandr V. Sychev, and Alena G. Upolovnikova⁺

Laboratory of Pyrometallurgy of Non-Ferrous Metals. FSBIS Institute of Metallurgy of the UB of the RAS. Amundsen St., 101. Yekaterinburg, 620016. Sverdlovsk Region. Russia. Phone: +7 (343) 232-91-62. E-mail: upol.ru@mail.ru

*Supervising author; ⁺Corresponding author

Keywords: viscosity, experiment planning, local simplex, synthetic slag, basicity, diagram of composition – viscosity.

Abstract

One of the objectives of physical-chemical analysis is diagramming structure-property. In this work, using the simplex lattices method of experiment planning are made diagrams composition-viscosity of system CaO-SiO₂-Al₂O₃-MgO-B₂O₃ basicity 5-8 containing 15-30% Al₂O₃, 8% MgO and 4% B₂O₃. For each viscosity values were obtained by appropriate mathematical models as a given polynomial of degree III, describing the relationship given viscosity temperature with the composition of the oxide system. Mathematical modeling results are shown in the graphs, the composition viscosity at a fixed temperature. Experimental studies in combination with mathematical method of simplex lattices planning allowed to obtain new data on the viscosity of CaO-SiO₂-Al₂O₃-MgO-B₂O₃ system with minimal cost in the temperature range 1400-1600 °C. It was found that the slag with a minimum viscosity of 0.8 Pa·s at 1400 °C located in a narrow area of the basicity 5.0-5.6 and 57.7-61.3% CaO, 10.2-12.0% SiO₂ and 15-20% Al₂O₃. The viscosity increased to 2.0 Pa·s in a wider range of the slag basicity (5.0-6.3) containing 56.0-62.8% CaO, 9.2-12.0% SiO₂ and 15-23% Al₂O₃. Minimum slag viscosity of 0.8 Pa·s is observed in the wider area of the main chemical composition and when the temperature rises to 1500 °C. For example, slag characterized a viscosity of 0.8 Pa·s at basicity 5.0-6.3 and 23% Al₂O₃, which is maintained by increasing the basicity to 7.1 and content of Al₂O₃ up to 28%. At a temperature 1600 °C minimum slag viscosity of 0.8 Pa s is saved in broader region of the basicity at 5.0-7.1 and 15.0-26.5% Al₂O₃. The viscosity of the slag containing 18.5-25.0% Al₂O₃ is not more than 1.2 Pa·s at increasing basicity to 8.0. Slag of the studied composition have high refining properties and can be recommended for the formation in the ladle furnace.

References

- [1] V.A. Kim, E.I. Nicholas, A.A. Akberdin and etc. Experiment planning in the study of physical and chemical properties of metallurgical slags. Toolkit. Alma-Ata: Science. 1989. 116p.
- [2] V.A. Kim, A.A. Akberdin, I.S. Kulikov and etc. The use of simplex lattices for constructing of composition-viscosity diagrams. Proceedings of the universities. Ferrous Metallurgy. 1980. No.9. P.167.
- [3] A.G. Upolovnikova, A.A. Babenko. Thermodynamic modeling of boron recovery from boron-containing slag. Butlerov Communications. 2016. Vol.48. No.10. P.114-118. ROI: jbc-02/16-48-10-114
- [4] W. Hongming, Z. Tingwang, Z. Hua. Effect of B₂O₃ on Melting Temperature, Viscosity and Desulfurization Capacity of CaO - based Refining Flux. ISIJ International. 2011. Vol.51. No.5. P.702-708.