Synthesis of 3,5-dinitro-1,4,5,6-tetrahydropyridine-2-amine

© Irina I. Surova,1,† Evgenia V. Ivanova,1 Yury M. Atroschchenko,1* Konstantin I. Kobrakov,2,* and Ivan V. Fedyanin3

1 Department of Chemistry. Tula State Lev Tolstoy Pedagogical University. Lenina St., 125, Tula, 300026, Russia. Phone: +7 (4872) 35-78-08. E-mail: reaktiv@tspu.tula.ru
2 Department of Organic Chemistry. Moscow State University of Design and Technology. Sadovnicheskaya St., 33, Moscow, 117997, Russia. Phone: +7 (495) 955-35-58. E-mail: kobrakovk@mail.ru
3 Institute of Organoelement Compounds. A. N. Nesmeyanov RAS. Vavilova St., 28, B-334, Moscow, 119991, Russia. Phone: +7 (499) 135-92-14. E-mail: ocy@xrlab.ineos.ac.ru

*Supervising author; †Corresponding author

Keywords: 3,5-dinitro-1,4,5,6-tetrahydropyridine-2-amine, 3,5-dinitropyridine-2-amines, σ- adducts, Δ2-piperideine, selective hydrogenation.

Abstract

Tetrahydropyridine derivatives possess antimicrobial, antioxidant, anti-inflammatory, analgesic effect. Therefore, the expansion of the range of these compounds and studying their properties is important. There are published data on various approaches to the formation of tetrahydropyridine structure: mild oxidation of piperidine and its derivatives, condensation of nitriles, primary amines, etc. Previously, we have implemented a selective dearomatization 6-tiazidine 3,5-dinitropyridine and 2-hydroxy-3,5-dinitropyridine under the action of tetrahydroborate sodium, followed by C-protonation of hydride adducts with the formation of tetrahydropyridine derivatives.

This article describes the two-step method of obtaining N-R,3,5-dinitro-1,4,5,6-tetrahydropyridine-2-amines based on N-substituted 3,5-dinitropyridine-2-amines. In the first stage under the action of a substrate, tetrahydroborate sodium as a result of dearomatization the selective joining of the hydride ion at the positions 4 and 6 of the pyridine ring with the formation of doubly charged intermediate σ-adduct. The target 3,5-dinitro-1,4,5,6-tetrahydropyridine-2-amines obtained by the action on σ-adducts diluted orthophosphoric acid. The transition to the soft conditions from the activated nitro groups by the pyridine system to anionic σ-adductum, and from them to the appropriate tetrahydropyridine allows obtaining products with high yields. The proposed method is applicable for obtaining new polyfunctional derivatives of Δ2-piperideine. In addition, further functionalization of amino-, nitro-, carboxyl groups opens up opportunities for a variety of compounds with presumably high biological activity.

The structure of the obtained compounds were proved by IR spectroscopy method, data of two-dimensional homo- (COSY) and heteronuclear (HMBC, HSQC) correlation NMR spectroscopy, and elemental analysis data. Final proof of the structure of the synthesized tetrahydropyridine was derived from RSA data of the crystal of the N-cycloheptyl-3,5-dinitro-1,4,5,6-tetrahydropyridine-2-amine. In the analyzed crystal tetrahydropyridine fragment is characterized by the conformation of the distorted elbow, with axial location of the nitro group in the 5-position. The oxygen atom of one of the nitro groups forms a strong intramolecular hydrogen bond with the proton of the amino group substituents, which leads to a reduction of the neighboring relations, in comparison with the average values from the Cambridge structural database.

References


