Полная исследовательская публикация

Тематический раздел: Препаративные исследования.

Идентификатор ссылки на объект – ROI: jbc-01/18-53-1-130

Подраздел: Координационная химия.

Цифровой идентификатор объекта – https://doi.org/10.37952/ROI-jbc-01/18-53-1-130

Публикация доступна для обсуждения в рамках функционирования постоянно

действующей интернет-конференции "Бутлеровские чтения". http://butlerov.com/readings/

Статья публикуется по материалам 2-го этапа *Мини-Симпозиума* "*Бутлеровское наследие – 17-18*" (г. Казань). УДК 541.49. Поступила в редакцию 20 января 2018 г.

Синтез, структура и свойства координационных соединений меди(II) и кобальта(II) с азотсодержащими гетероциклическими катионами

© Проценко $^{1+}$ Александра Николаевна, Шакирова $^{1+}$ Ольга Григорьевна и Куратьева 2 Наталья Владимировна

¹ Факультет экологии и химической технологии. Комсомольский-на-Амуре государственный университет. Пр. Ленина, 27. г. Комсомольск-на-Амуре, 681013. Россия.

Е-mail: Protsenko.chem@gmail.com

² Институт неорганической химии им. Николаева СО РАН. Пр. Акад. Лаврентьева, 3.
г. Новосибирск, 630090. Россия.

Ключевые слова: синтез, медь(II), кобальт(II), 3-амино-2-хлоро-5-метилпиридин, 2-(хлорметил)пиридин.

Аннотация

Синтезированы новые координационные соединения меди(II) и кобальта(II) с азотсодержащими катионами 3-амино-2-хлоро-5-метилпиридином ($\mathbf{3}$ - \mathbf{L}^1) и 2-(хлорметил)пиридином ($\mathbf{2}$ - \mathbf{L}^2) состава ($\mathbf{3}$ - \mathbf{L}^1 H) $[CuCl_4] \cdot H_2O(I)$, $(3-L^1H)_2[CuCl_4] \cdot 2H_2O(II)$, $(3-L^1H)_2[CoCl_4](III)$, $(2-L^2H)_2[CuCl_4](IV)$, $(2-L^2H)_2[CoCl_4](V)$, $(2-L^2H)_2[CuBr_4]$ (VI). Соединения исследованы методами РСА, ТГА, ДСК. Показаны различия структуры образующихся катионов в зависимости от взаимного расположения заместителей в пиридиновом кольце. В соединении 5-амино-2-хлоро-3-метилпиридин $(5-L^1)$ атом хлора дезактивирует пиридиновое кольцо, что приводит к повышению концентрации непротонированного пиридина. В изомерной ей молекуле 3-амино-2-хлоро-5-метилпиридин (3-L¹) дезактивирующее действие хлора устраняется благодаря положительному мезомерному эффекту амино группы. В условиях кислой среды при конкурирующих процессах протонирования органического основания и его комплексообразования с ионами 3d-металлов первого переходного ряда равновесие сдвигается в сторону реакций протонирования по амино группе молекулы 5- L^1 и атому азота пиридинового кольца соединения 3- L^1 . Для соединений меди(II) с 3-L¹ наблюдаются эффекты термо- и сольватохромизма, обратимый переход цвета зеленый \leftrightarrow желтый. Показано, что молекулы кристаллизационной воды в комплексах хлорокупратов являются структурообразующими за счет образования водородных связей и определяют геометрию координационного полиэдра $[CuCl_4]^{-2}$. Анион $[CuHal_4]^{-2}$ в соединениях I, IV, VI имеет структуру искаженного тетраэдра, а в комплексе II – плоско-квадратное строение. Тетраэдрическая структура комплексов III и V типична для тетрагалогенидов кобальта(II). Структурные особенности и водородные контакты хорошо индицируются спектральными методами анализа (ИК и электронная (СДО) спектроскопия). Найдена взаимосвязь длины волны отраженного света и угла Hal-M-Hal координационного полиэдра. Показано, что уменьшение отклонения угла Hal-M-Hal в галогенидных комплексах меди(II) и кобальта(II) от идеала приводит к увеличению значения длины волны.

^{*}Ведущий направление; *Поддерживающий переписку