Full Paper

Reference Object Identifier - ROI: jbc-02/18-54-5-152 Subsection: Chemistry High Temperature. Publication is available for discussion in the framework of the on-line Internet conference "Butlerov readings". http://butlerov.com/readings/ Submitted on February 28, 2018.

Thermodynamic modeling of phase formation during sintering of wolframite with alkali metal carbonates

© Kirill V. Pikulin,⁺ Evgeny N. Selivanov,^{*} and Lyudmila I. Galkova

Laboratory of Pyrometallurgy of Non-Ferrous Metals. Institute of Metallurgy of the UB of the RAS. Amundsen St., 101. Yekaterinburg, 620016. Sverdlovsck. Russia. Phone: +7 (343) 232-90-24. E-mail: pikulin.imet@gmail.com

*Supervising author; ⁺Corresponding author

Keywords: thermodynamic modeling, heat, wolframite, sodium carbonate, potassium carbonate, silicon oxide, equilibrium composition, phase, tungstates, oxides.

Abstract

Thermodynamic modeling of the sintering of wolframites with alkali metal carbonates was carried out using the software complex HSC Chemistry 6.12. Transformations were considered for MnWO₄ - FeWO₄ -Na₂CO₃ - (K₂CO₃) systems with additions of SiO₂, Al₂O₃, FeMoO₄, close to the real compositions of wolframite concentrates. The simulation was carried out in an air medium (0.1 MPa) with cooling of the working medium from 1273 to 298°K and the amount of alkali metal carbonate equal to the stoichiometrically necessary for the formation of sodium tungstate (potassium tungstate). The replacement of Na_2CO_3 by K_2CO_3 in the working medium under consideration had little effect on the phase composition of the reaction products. The decrease of the temperature contributed to the formation of secondary $MnWO_4$. To eliminate this, it is expedient to carry out rapid-cooling strengthening of products, which ensures the stabilization of high-temperature watersoluble phases of sodium and potassium tungstates. The introduction of SiO₂, Al₂O₃ and FeMoO₄ into the composition of a mixture of iron and manganese wolframites reduced (1073-1173 K) the degree of transition of the latter to tungstates. The smaller activity of K_2CO_3 to these additives allowed to reduce the excess K₂CO₃ to 20% against 60% with Na₂CO₃ for complete conversion to a water-soluble tungstate. It was shown that the use of K_2CO_3 in the sintering of wolframite concentrates was effective with a large amount of SiO₂ in the basic material.

References

- [1] A.N. Zelikman, B.G. Korshunov Metallurgy of rare metals. *Moscow: Metallurgy*. **1991**, 432p. (russian)
- [2] E. Lassner, W.-D. Schubert, E. Lüderitz, H.U. Wolf Tungsten, Tungsten Alloys, and Tungsten Compounds. Encyclopedia of Industrial chemistry. 2012. 40p.
- [3] G.N. Kozhevnikov, A.G. Vodopyanov, F.G. Sitdikov Patent of the Russian Federation No. 22993132. 10.02.2007. Method of processing of wolframite concentrate. (russian)
- [4] F.G. Sitdikov, K.V. Pikulin, L.I. Galkova, E.N. Selivanov, A.G. Vodopvanov Processing of low-grade tungsten concentrates. Materials of the Intern. scientific-practical. Conference "Rhenium, tungsten, molybdenum - 2016. Scientific research, technological development, industrial application". 2016. P.126-130. (russian)
- [5] G.K. Moiseev, G.P. Vyatkin Thermodynamic modeling in inorganic systems. *Chelyabinsk: SUSU.* 1999. 256p. (russian)
- [6] N.G. Ageev, S.S. Naboychenko. Metallurgical calculations using the software package HSC Chemistry: a tutorial. *Ekaterinburg: UrFU*, **2016**, 124p. (russian)
- [7] G.G. Mikhailov, B.I. Leonovich, Yu.S. Kuznetsov. Thermodynamics of metallurgical processes and systems. Moscow: National University of Science and Technology «MISIS». 2009. 520p. (russian)
- [8] S.S. Belsky Processing of wolframite concentrate. Bulletin of the Irkutsk State Technical University. 2018. Vol. 22. No.1. P.186-193. DOI: 10.21285/1814-3520-2018-1-186-193. (russian)
- [9] A.S. Medvedev. Non-traditional ways of processing tungsten raw materials. *Non-ferrous metallurgy*. 2016. No.5. P.28. (russian)

THERMODYNAMIC MODELING OF PHASE FORMATION DURING SINTERING OF WOLFRAMITE... 152-158

- [10] M.N. Kvyatkovskaya, A.Zh. Koshkunova, N.G. Lokhova, A.T. Shoinbaev Processing of wolframite concentrate from the ore of the Akchatausky GOK. Izvestiya of the National Academy of Sciences of the Republic of Kazakhstan. *Chemical series.* 2006. No.6. P.64-68.
- [11] V.L. Butukhanov, E.V. Khromtsova. Physico-chemical basis of complex use of tungsten mineral raw materials. *Khabarovsk: Pacific State University.* **2015**. 147p. (russian)
- [12] G.K. Shurdumov, Z.V. Shurdumova, Z.A. Cherkesov Synthesis of potassium tungstate in the K2CO3-KNO3-WO3 system. *Journal of Inorganic Chemistry*. **2009**. Vol.54. No.1. P.138-141. (russian)