Полная исследовательская публикация Тематический раздел: Исследование новых технологий. Идентификатор ссылки на объект – ROI: jbc-01/18-54-5-82 Подраздел: Химическая технология. Цифровой идентификатор объекта – https://doi.org/10.37952/ROI-jbc-01/18-54-5-82 Публикация доступна для обсуждения в рамках функционирования постоянно действующей интернет-конференции "Бутлеровские чтения". http://butlerov.com/readings/УДК 544.6.078.328. Поступила в редакцию 19 апреля 2018 г.

Новое сырье для получения активированного углерода как материала для электродов суперконденсаторов

© Астахов* Михаил Васильевич, Табаров⁺ Фаррух Саадиевич, Калашник Анатолий Трофимович, Лепкова Татьяна Львовна, Климонт Анастасия Александровна и Амелина Дарья Евгеньевна

Кафедра физической химии. Институт новых материалов и нанотехнологий. Национальный исследовательский технологический университет «МИСиС» НИТУ "МИСиС". Ленинский проспект, 4. г. Москва, 119991. Россия. Тел.: (495) 236-87-38. E-mail: fantotsi.0104@mail.ru

Ключевые слова: активированный уголь, борщевик, метиленовый голубой, двойной электрический слой, адсорбционная емкость, емкость, электроды.

Аннотация

Многоуровневая структурная организация растительных волокон делает травянистые растения перспективным исходным материалом для получения на их основе углеродных структур для создания высокоэффективных электродов. Из травянистого растения – борщевика (Heraclēum sphondylīum) получен активный углерод (АУ). Для нахождения эффективного пути получения активного материала с оптимальными свойствами были выбраны два варианта их активации: а) карбонизация до 400 °C, далее пропитка в 5-ти процентном водном растворе H₃PO₄, с последующей активацией при 900 °C, а также пропитка в 5-ти процентном водном растворе Н₃РО₄, и проведение непрерывной карбонизации, и активация при 900 °C. Активацию образцов проводили в потоке углекислого газа с последующим охлаждением до комнатной температуры в потоке аргона. На основе активированного углерода сделаны электроды для суперконденсатора (СК). С помощью циклической вольтамперометрии и гальваностатического заряда-разряда получены электрохимические характеристики суперконденсатора. По данным кривых гальваностатического заряда, а также циклической вольтамперометрии выявлено, что скорость подачи газа не оказывает существенного влияния на конечный результат. Тем самым показано, что порядок проведения активации и пропитки исходного материала не так сильно влияет на электрохимические характеристики. Если сравнивать емкостные характеристики испытуемых образцов, а также их удельные поверхности, то наиболее оптимальным по электрохимическим свойствам является образец из борщевика активированным при 900 °C со скоростью подачи газа 200 мм/мин (БЩ 200 900). Данные по адсорбционной емкости по метиленовому голубому, а также данные по изотермам адсорбции/десорбции N₂ по методу ВЈН было показано, что рабочая доля всех пор, это поры диметром между 3-10 нм. Значения адсорбционной емкости по метиленовому голубому для всех образцов совпадают, и оно составляет ~370 мг/г, но их удельная поверхность, измеренной методом ВЕТ, различаются.

82 © Бутлеровские сообщения. 2018 . Т.54. №5 г. К	Казань. Республика Т	Гатарстан. Россия.
---	----------------------	--------------------

^{*}Ведущий направление; *Поддерживающий переписку