Полная исследовательская публикация

Тематический раздел: Препаративные исследования. Идентификатор ссылки на объект- ROI: jbc-01/18-55-8-16 Подраздел: Органическая химия.

Цифровой идентификатор объекта – https://doi.org/10.37952/ROI-ibc-01/18-55-8-16

Публикация доступна для обсуждения в рамках функционирования постоянно

действующей интернет-конференции "Бутлеровские чтения". http://butlerov.com/readings/ УДК 542.943.5+547.497.1+547.597. Поступила в редакцию 20 июля 2018 г.

Прямой озонолитический метод превращения Δ^3 -карена и (+)- α -пинена в дисемикарбазоны

© Легостаева⁺ Юлия Викторовна, Гарифуллина Лилия Рашидовна, Ишмуратова Наиля Мавлетзяновна и Ишмуратов* Гумер Юсупович

Уфимский Институт химии – обособленное структурное подразделение Федерального государственного бюджетного научного учреждения Уфимского федерального исследовательского центра Российской академии наук. пр-т Октября, 71. г. Уфа, 450054. Республика Башкортостан. Россия. Тел.: (8347) 235-58-01. E-mail: insect@anrb.ru

Ключевые слова: озонолиз, Δ^3 -карен, (+)- α -пинен, семикарбазид, семикарбазоны.

Аннотация

Исследована реакционная способность семикарбазида в превращениях пероксидных продуктов озонолиза монотерпенов в метаноле. Ранее при обработке солянокислым семикарбазидом пероксидов, полученных озонолизом Δ^3 -карена и (+)- α -пинена в метаноле, с высокими выходами были получены соответствующие кетоэфиры. Продуктов конденсации с семикарбазидом ни по кето-, ни по альдегидной группе не наблюдалось, что, вероятно, было связано с наличием в молекуле реагента HCl, который, как известно, сам может участвовать в разложении пероксидов. В данной работе показано применение самого семикарбазида для восстановления пероксидных продуктов озонолиза тризамещенных бициклических монотерпенов (Δ^3 -карена и (+)- α -пинена). При исследовании превращений продуктов озонолиза данных субстратов под действием семикарбазида, приготовленного по известной методике, было обнаружено, что они превращаются в соответствующие дисемикарбазоны с *анти*-конфигурацией по связи C=N. Предложен альтернативный способ получения целевых дисемикарбазонов обработкой семикарбазидом, образующимся *in situ* из его гидрохлорида при нейтрализации ацетатом натрия. Продукты озонирования были обработаны смесью (1:1) NH₂C(O)NHNH₂·HCl и AcONa, при этом удалось значительно снизить время реакции. Таким образом, предложен эффективный однореакторный метод превращения Δ^3 -карена и (+)- α -пинена в дисемикарбазоны, базирующийся на восстановлении пероксидных продуктов их озонолиза семикарбазидом. Преимуществом предлагаемого метода является отсутствие необходимости выделения карбонильного соединения, в то время как стандартный способ получения молекул с гидразонной группой из алкенов с применением озонолитического расщепления предполагает восстановление пероксидов такими восстановителями как Me₂S, PPh₃ и другие, выделение образующегося альдегида либо кетона и последующую их конденсацию с производными гидразина.

^{*}Ведущий направление; *Поддерживающий переписку