Полная исследовательская публикация Тематический раздел: Термодинамические исследования. Идентификатор ссылки на объект – ROI-jbc-01/20-62-4-94 Подраздел: Технология неорганических веществ. Цифровой идентификатор объекта – DOI: 10.37952/ROI-jbc-01/20-62-4-94 Публикация доступна для обсуждения в рамках функционирования постоянно действующей интернет-конференции "Бутлеровские чтения". http://butlerov.com/readings/УДК 669.046.464:541.124. Поступила в редакцию 29 апреля 2020 г.

Моделирование восстановления металлов из расплавов B_2O_3 -CaO-Fe $_2O_3$ -ZnO смесями CO-CO $_2$

© Вусихис⁺ Александр Семенович, Селиванов* Евгений Николаевич, Тюшняков Станислав Николаевич и Ченцов Виктор Павлович

Институт металлургии УрО РАН. ул. Амундсена, 101. г. Екатеринбург, 620016. Россия. E-mail: vas58@mail.ru

Ключевые слова: методика, термодинамическое моделирование, кинетика, восстановление, газ, барботаж, многокомпонентный оксидный расплав, металл.

Аннотация

Для прогнозирования условий восстановления металлов из оксидного расплава газом в барботажных процессах разработана методика термодинамического моделирования, обеспечивающая приближение к реальным системам с периодическим выводом металлической фазы и газов из состава рабочего тела. В представленной работе приведены результаты термодинамического моделирования процессов восстановления цинка и железа из расплавов B_2O_3 -CaO-Fe $_2O_3$ -ZnO смесью CO-CO $_2$ разного состава в интервале температур 1273-1673 К. в приближении к реальным процессам. В ходе расчетов оценивали содержание оксидов цинка и железа в расплаве и степени их восстановления.

Показано, что этот процесс протекает в три этапа. На первом этапе происходит восстановление Fe_2O_3 до Fe_3O_4 и FeO. Значения C_{Fe2O3} уменьшаются почти до нуля, одновременно увеличиваются C_{Fe3O4} и C_{FeO} . К концу этапа C_{Fe3O4} достигает максимального значения. На втором этапе имеет место переход Fe_3O_4 \rightarrow FeO, когда значения C_{FeO} достигают максимума, цинк и железо начинают восстанавливаться. Повышение температуры способствует металлизации по цинку, но уменьшает по железу. Увеличение отношения CO/CO_2 во вводимом газе позволяет уменьшать степени восстановления железа и тем самым обеспечивает достижение требуемых показателей по селективному восстановлению цинка но требует большего расхода газа.

Установленные взаимосвязи C_{ZnO} и φ_{Zn} с температурой и количеством введенного газавосстановителя полезны для предварительной оценки вероятных показателей процесса отгонки цинка из расплава и могут быть использованы в качестве базовых для анализа экспериментальных результатов.

4 © <i>Бутлеровские сообщения</i> . 2020 . Т.62. №4 г. Казань. Республика Татарстан. Ро	ссия.
---	-------

^{*}Ведущий направление; *Поддерживающий переписку