Тематический раздел: Биохимические исследования.

Утверждённая научная специальность ВАК: 1.4.9. Биоорганическая химия; 1.5.3. Молекулярная биология;

1.5.4. Биохимия

Дополнительная научная специальность ВАК: 1.5.7. Генетика

Идентификатор ссылки на объект – ROI: jbc-01/24-77-1-79 Цифровой идентификатор объекта – DOI: 10.37952/ROI-jbc-01/24-77-1-79 Поступила в редакцию 15 января 2024 г. УДК 579.695; 546.85; 502.55; 661.63.

Влияние источника фосфора на кислотность культуральной среды

© Миндубаев¹* Антон Зуфарович, Бабынин² Эдуард Викторович, Антех³ Джойс Дедеи ¹ Казанский национальный исследовательский технологический университет. ул. Карла Маркса, 68.

казанский национальный исслеоовательский технологический университет. ул. Карла Маркс г. Казань, 420015. Республика Татарстан. Россия. E-mail: antonmindubaev@gmail.com ² Татарский НИИАХП ФИЦ КазНЦ РАН. Оренбургский тракт, 20а.

г. Казань, 420059. Республика Татарстан. Россия.

³ Казанский (Приволжский) федеральный университет. ул. Университетская, 18. г. Казань, 420008. Республика Татарстан. Россия.

*Ведущий направление; *Поддерживающий переписку

Ключевые слова: Aspergillus niger, фосфатный буфер, белый фосфор, pH.

Аннотация

Способность биоты существовать в присутствии такого вещества, как белый фосфор, сама по себе удивительна. Даже если речь идет о таком жизнестойком организме, как черный аспергилл. Но белый фосфор не только обладает экстремальной токсичностью. Культивирование микроорганизмов на нем в качестве единственного источника биогенного элемента исключает возможность внесения в культуральную среду фосфатов. А они играют важнейшую роль в качестве кислотно-основных буферных систем, стабилизирующих значения рН в области, благоприятной для роста. С этой проблемой приходится сталкиваться при исследовании биодеградации любого вещества, содержащего фосфор в своем составе. Это явление усугубляет токсическое воздействие белого фосфора и ряда соединений данного элемента. Поэтому, представленное исследование посвящено сравнению значений рН сред с белым фосфором и смесью гидрофосфата и дигидрофосфата калия — классическим источником фосфора. Причем, сравнивались как свежеприготовленные среды, так и после культивирования Aspergillus niger в течение недели. Оказалось, что выбор источника фосфора действительно влияет на рН среды, среда с белым фосфором всегда имеет более высокую кислотность. Но различия нельзя назвать резкими. Вероятно, токсические свойства белого фосфора сильнее влияют на жизнедеятельность аспергилла, чем значения рН культуральной среды.

Выходные данные для цитирования русскоязычной печатной версии статьи:

Миндубаев А.З., Бабынин Э.В., Антех Д.Д. Влияние источника фосфора на кислотность культуральной среды. *Бутлеровские сообщения.* **2024**. Т.77. №1. С.79-90. DOI: 10.37952/ROI-jbc-01/24-77-1-79

Выходные данные для цитирования русскоязычной электронной версии статьи:

Миндубаев А.З., Бабынин Э.В., Антех Д.Д. Влияние источника фосфора на кислотность культуральной среды. *Бутлеровские сообщения С.* **2024**. Т.7. №1. Id.2. DOI: 10.37952/ROI-jbc-01/24-77-1-79/ROI-jbc-RC/24-7-1-2

The output for citing the English online version of the article:

Anton Z. Mindubaev, Edward V. Babynin, Joyce D. Anteh. Adaptation of microorganisms to white phosphorus as a result of directed selection. Genetic identification of sustainable *Aspergillus* and metabolic profiling of *Streptomyces* A8. *Butlerov Communications C.* **2024**. Vol.7. No.1. Id.2. DOI: 10.37952/ROI-jbc-01/24-77-1-79/ROI-jbc-C/24-7-1-2