Полная исследовательская публикация

Тематический раздел: Кинетические исследования.

Утверждённая научная специальность ВАК: 1.4.3. Органическая химия; 1.4.4. Физическая химия;

1.4.14. Кинетика и катализ; 2.6.10. Технология органических веществ

Идентификатор ссылки на объект – ROI: jbc-01/25-83-9-20

Цифровой идентификатор объекта – DOI: 10.37952/ROI-jbc-01/25-83-9-20

УДК 66.011; 544.4.032.7. Поступила в редакцию 16 июля 2025 г.

Кинетические закономерности окислительного разложения ионообменных смол водным раствором пероксида водорода

© Козлова 1 Марина Михайловна, Марков 1,2* Вячеслав Филиппович, Маскаева $^{1,2+}$ Лариса Николаевна

Уральский федеральный университет имени первого Президента России Б.Н. Ельцина. ул. Мира, 19. г. Екатеринбург, 620002. Свердловская область. Россия. Тел.: +7 (343) 374-39-05. E-mail: m.m.kozlova@urfu.ru
Уральский институт Государственной противопожарной службы МЧС России. ул. Мира, 22. г. Екатеринбург, 620022. Свердловская область. Россия.

Ключевые слова: катионообменная смола КУ-2×8, анионообменная смола AB-17×8, пероксид водорода, процесс Фентона, химическая кинетика.

Аннотация

Разработка технологии утилизации малоактивных отработанных ионообменных смол является одной из важнейших нерешенных задач в атомной энергетике. Ежегодно на атомных электростанциях накапливается до 30 тыс. м³ отработанных ионообменных смол. Такой ежегодный прирост неизбежно приведет к созданию в будущем серьезных экологических проблем. Применяемые в настоящее время традиционные способы утилизации смол являются высокозатратными и сохраняют возможность радиолиза оставшейся в порах смолы воды. Помимо этого, существуют затруднения с транспортировкой и хранением отходов. В настоящей работе проведены кинетические исследования окислительного разложения ионообменных смол на примере сульфокислотного катионита КУ-2×8 и сильноосновного анионита AB-17×8 водным раствором пероксида водорода. Кинетику процесса исследовали с использованием 5-25% растворов Н₂О₂, содержащих каталитические добавки солей меди(II) и железа(II, III). При бескаталитическом окислительном разложении катионита 5-25 % об. пероксидом водорода по мере повышения температуры с 348 до 368 К эффективная константа скорости процесса возрастает в 11 раз – с $2.6 \cdot 10^{-4}$ до $2.86 \cdot 10^{-3}$ г^{1/3}·мин. ⁻¹. В процессе каталитического окислительного разложения катионита диапазон рабочих температур снижается до 323-353 К, при этом в присутствии катализатора FeSO₄ эффективная константа скорости увеличивается в 10 раз – до 3.26·10⁻² $\Gamma^{1/3}$ мин. $^{-1}$. Предварительная сорбция катионита из 0.004 M раствора FeSO₄ обеспечивает повышение константы скорости процесса при 323 K по сравнению с аналогичным исходным содержанием FeSO₄ в реакторе до 11 раз. При каталитическом разложении анионита с добавлением катализатора CuSO₄ наблюдается увеличение эффективной константы скорости в 32 раза. Рассчитанные значения кажущейся энергии активации окислительного разложения ионообменных смол $KУ-2 \times 8$ (114.0 $\pm 1-40.3\pm 1$ кДж/моль) и AB-17 $\times 8$ $(124.2.0\pm1-97.9\pm1\ \text{кДж/моль})$ характерны для процесса, протекающего в кинетической области реагирования.

Выходные данные для цитирования русскоязычной печатной версии статьи:

Козлова М.М., Марков В.Ф., Маскаева Л.Н. Кинетические закономерности окислительного разложения ионообменных смол водным раствором пероксида водорода. *Бутлеровские сообщения*. **2025**. Т.83. №9. С.20-29. DOI: 10.37952/ROI-jbc-01/25-83-9-20

Выходные данные для цитирования русскоязычной электронной версии статьи:

Козлова М.М., Марков В.Ф., Маскаева Л.Н. Кинетические закономерности окислительного разложения ионообменных смол водным раствором пероксида водорода. *Бутлеровские сообщения А.* **2025**. Т.11. №3. Id.13. DOI: 10.37952/ROI-jbc-01/25-83-9-20/ROI-jbc-RA/25-11-3-13

The output for citing the English online version of the article:

Marina M. Kozlova, Vyacheslav F. Markov, Larisa N. Maskaeva. Kinetic regularities of oxidative decomposition of ion-exchange resins by an aqueous solution of hydrogen peroxide. *Butlerov Communications A.* **2025**. Vol.11. No.3. Id.13. DOI: 10.37952/ROI-jbc-01/25-83-9-20/ROI-jbc-A/25-11-3-13

20	© Бутлеровские с	сообшения. 2025 . Т.83. №9.	г. Казань. Ресг	ублика Татарстан. Россия

^{*}Ведущий направление; +Поддерживающий переписку